-
Notifications
You must be signed in to change notification settings - Fork 1.6k
/
analyze_logs.py
202 lines (178 loc) · 7.29 KB
/
analyze_logs.py
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
# Copyright (c) OpenMMLab. All rights reserved.
import argparse
import json
from collections import defaultdict
import numpy as np
import seaborn as sns
from matplotlib import pyplot as plt
def cal_train_time(log_dicts, args):
for i, log_dict in enumerate(log_dicts):
print(f'{"-" * 5}Analyze train time of {args.json_logs[i]}{"-" * 5}')
all_times = []
for epoch in log_dict.keys():
if args.include_outliers:
all_times.append(log_dict[epoch]['time'])
else:
all_times.append(log_dict[epoch]['time'][1:])
all_times = np.array(all_times)
epoch_ave_time = all_times.mean(-1)
slowest_epoch = epoch_ave_time.argmax()
fastest_epoch = epoch_ave_time.argmin()
std_over_epoch = epoch_ave_time.std()
print(f'slowest epoch {slowest_epoch + 1}, '
f'average time is {epoch_ave_time[slowest_epoch]:.4f}')
print(f'fastest epoch {fastest_epoch + 1}, '
f'average time is {epoch_ave_time[fastest_epoch]:.4f}')
print(f'time std over epochs is {std_over_epoch:.4f}')
print(f'average iter time: {np.mean(all_times):.4f} s/iter')
print()
def plot_curve(log_dicts, args):
if args.backend is not None:
plt.switch_backend(args.backend)
sns.set_style(args.style)
# if legend is None, use {filename}_{key} as legend
legend = args.legend
if legend is None:
legend = []
for json_log in args.json_logs:
for metric in args.keys:
legend.append(f'{json_log}_{metric}')
assert len(legend) == (len(args.json_logs) * len(args.keys))
metrics = args.keys
num_metrics = len(metrics)
for i, log_dict in enumerate(log_dicts):
epochs = list(log_dict.keys())
for j, metric in enumerate(metrics):
print(f'plot curve of {args.json_logs[i]}, metric is {metric}')
if metric not in log_dict[epochs[args.interval - 1]]:
raise KeyError(
f'{args.json_logs[i]} does not contain metric {metric}')
if args.mode == 'eval':
if min(epochs) == args.interval:
x0 = args.interval
else:
# if current training is resumed from previous checkpoint
# we lost information in early epochs
# `xs` should start according to `min(epochs)`
if min(epochs) % args.interval == 0:
x0 = min(epochs)
else:
# find the first epoch that do eval
x0 = min(epochs) + args.interval - \
min(epochs) % args.interval
xs = np.arange(x0, max(epochs) + 1, args.interval)
ys = []
for epoch in epochs[args.interval - 1::args.interval]:
ys += log_dict[epoch][metric]
# if training is aborted before eval of the last epoch
# `xs` and `ys` will have different length and cause an error
# check if `ys[-1]` is empty here
if not log_dict[epoch][metric]:
xs = xs[:-1]
ax = plt.gca()
ax.set_xticks(xs)
plt.xlabel('epoch')
plt.plot(xs, ys, label=legend[i * num_metrics + j], marker='o')
else:
xs = []
ys = []
num_iters_per_epoch = \
log_dict[epochs[args.interval-1]]['iter'][-1]
for epoch in epochs[args.interval - 1::args.interval]:
iters = log_dict[epoch]['iter']
if log_dict[epoch]['mode'][-1] == 'val':
iters = iters[:-1]
xs.append(
np.array(iters) + (epoch - 1) * num_iters_per_epoch)
ys.append(np.array(log_dict[epoch][metric][:len(iters)]))
xs = np.concatenate(xs)
ys = np.concatenate(ys)
plt.xlabel('iter')
plt.plot(
xs, ys, label=legend[i * num_metrics + j], linewidth=0.5)
plt.legend()
if args.title is not None:
plt.title(args.title)
if args.out is None:
plt.show()
else:
print(f'save curve to: {args.out}')
plt.savefig(args.out)
plt.cla()
def add_plot_parser(subparsers):
parser_plt = subparsers.add_parser(
'plot_curve', help='parser for plotting curves')
parser_plt.add_argument(
'json_logs',
type=str,
nargs='+',
help='path of train log in json format')
parser_plt.add_argument(
'--keys',
type=str,
nargs='+',
default=['mAP_0.25'],
help='the metric that you want to plot')
parser_plt.add_argument('--title', type=str, help='title of figure')
parser_plt.add_argument(
'--legend',
type=str,
nargs='+',
default=None,
help='legend of each plot')
parser_plt.add_argument(
'--backend', type=str, default=None, help='backend of plt')
parser_plt.add_argument(
'--style', type=str, default='dark', help='style of plt')
parser_plt.add_argument('--out', type=str, default=None)
parser_plt.add_argument('--mode', type=str, default='train')
parser_plt.add_argument('--interval', type=int, default=1)
def add_time_parser(subparsers):
parser_time = subparsers.add_parser(
'cal_train_time',
help='parser for computing the average time per training iteration')
parser_time.add_argument(
'json_logs',
type=str,
nargs='+',
help='path of train log in json format')
parser_time.add_argument(
'--include-outliers',
action='store_true',
help='include the first value of every epoch when computing '
'the average time')
def parse_args():
parser = argparse.ArgumentParser(description='Analyze Json Log')
# currently only support plot curve and calculate average train time
subparsers = parser.add_subparsers(dest='task', help='task parser')
add_plot_parser(subparsers)
add_time_parser(subparsers)
args = parser.parse_args()
return args
def load_json_logs(json_logs):
# load and convert json_logs to log_dict, key is epoch, value is a sub dict
# keys of sub dict is different metrics, e.g. memory, bbox_mAP
# value of sub dict is a list of corresponding values of all iterations
log_dicts = [dict() for _ in json_logs]
for json_log, log_dict in zip(json_logs, log_dicts):
with open(json_log, 'r') as log_file:
for line in log_file:
log = json.loads(line.strip())
# skip lines without `epoch` field
if 'epoch' not in log:
continue
epoch = log.pop('epoch')
if epoch not in log_dict:
log_dict[epoch] = defaultdict(list)
for k, v in log.items():
log_dict[epoch][k].append(v)
return log_dicts
def main():
args = parse_args()
json_logs = args.json_logs
for json_log in json_logs:
assert json_log.endswith('.json')
log_dicts = load_json_logs(json_logs)
eval(args.task)(log_dicts, args)
if __name__ == '__main__':
main()