-
Notifications
You must be signed in to change notification settings - Fork 1.6k
/
Copy pathsparse_encoder.py
491 lines (420 loc) · 19 KB
/
sparse_encoder.py
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
266
267
268
269
270
271
272
273
274
275
276
277
278
279
280
281
282
283
284
285
286
287
288
289
290
291
292
293
294
295
296
297
298
299
300
301
302
303
304
305
306
307
308
309
310
311
312
313
314
315
316
317
318
319
320
321
322
323
324
325
326
327
328
329
330
331
332
333
334
335
336
337
338
339
340
341
342
343
344
345
346
347
348
349
350
351
352
353
354
355
356
357
358
359
360
361
362
363
364
365
366
367
368
369
370
371
372
373
374
375
376
377
378
379
380
381
382
383
384
385
386
387
388
389
390
391
392
393
394
395
396
397
398
399
400
401
402
403
404
405
406
407
408
409
410
411
412
413
414
415
416
417
418
419
420
421
422
423
424
425
426
427
428
429
430
431
432
433
434
435
436
437
438
439
440
441
442
443
444
445
446
447
448
449
450
451
452
453
454
455
456
457
458
459
460
461
462
463
464
465
466
467
468
469
470
471
472
473
474
475
476
477
478
479
480
481
482
483
484
485
486
487
488
489
490
491
# Copyright (c) OpenMMLab. All rights reserved.
import torch
from mmcv.ops import points_in_boxes_all, three_interpolate, three_nn
from mmcv.runner import auto_fp16
from torch import nn as nn
from mmdet3d.ops import SparseBasicBlock, make_sparse_convmodule
from mmdet3d.ops.spconv import IS_SPCONV2_AVAILABLE
from mmdet.models.losses import sigmoid_focal_loss, smooth_l1_loss
from ..builder import MIDDLE_ENCODERS
if IS_SPCONV2_AVAILABLE:
from spconv.pytorch import SparseConvTensor, SparseSequential
else:
from mmcv.ops import SparseConvTensor, SparseSequential
@MIDDLE_ENCODERS.register_module()
class SparseEncoder(nn.Module):
r"""Sparse encoder for SECOND and Part-A2.
Args:
in_channels (int): The number of input channels.
sparse_shape (list[int]): The sparse shape of input tensor.
order (list[str], optional): Order of conv module.
Defaults to ('conv', 'norm', 'act').
norm_cfg (dict, optional): Config of normalization layer. Defaults to
dict(type='BN1d', eps=1e-3, momentum=0.01).
base_channels (int, optional): Out channels for conv_input layer.
Defaults to 16.
output_channels (int, optional): Out channels for conv_out layer.
Defaults to 128.
encoder_channels (tuple[tuple[int]], optional):
Convolutional channels of each encode block.
Defaults to ((16, ), (32, 32, 32), (64, 64, 64), (64, 64, 64)).
encoder_paddings (tuple[tuple[int]], optional):
Paddings of each encode block.
Defaults to ((1, ), (1, 1, 1), (1, 1, 1), ((0, 1, 1), 1, 1)).
block_type (str, optional): Type of the block to use.
Defaults to 'conv_module'.
"""
def __init__(self,
in_channels,
sparse_shape,
order=('conv', 'norm', 'act'),
norm_cfg=dict(type='BN1d', eps=1e-3, momentum=0.01),
base_channels=16,
output_channels=128,
encoder_channels=((16, ), (32, 32, 32), (64, 64, 64), (64, 64,
64)),
encoder_paddings=((1, ), (1, 1, 1), (1, 1, 1), ((0, 1, 1), 1,
1)),
block_type='conv_module'):
super().__init__()
assert block_type in ['conv_module', 'basicblock']
self.sparse_shape = sparse_shape
self.in_channels = in_channels
self.order = order
self.base_channels = base_channels
self.output_channels = output_channels
self.encoder_channels = encoder_channels
self.encoder_paddings = encoder_paddings
self.stage_num = len(self.encoder_channels)
self.fp16_enabled = False
# Spconv init all weight on its own
assert isinstance(order, tuple) and len(order) == 3
assert set(order) == {'conv', 'norm', 'act'}
if self.order[0] != 'conv': # pre activate
self.conv_input = make_sparse_convmodule(
in_channels,
self.base_channels,
3,
norm_cfg=norm_cfg,
padding=1,
indice_key='subm1',
conv_type='SubMConv3d',
order=('conv', ))
else: # post activate
self.conv_input = make_sparse_convmodule(
in_channels,
self.base_channels,
3,
norm_cfg=norm_cfg,
padding=1,
indice_key='subm1',
conv_type='SubMConv3d')
encoder_out_channels = self.make_encoder_layers(
make_sparse_convmodule,
norm_cfg,
self.base_channels,
block_type=block_type)
self.conv_out = make_sparse_convmodule(
encoder_out_channels,
self.output_channels,
kernel_size=(3, 1, 1),
stride=(2, 1, 1),
norm_cfg=norm_cfg,
padding=0,
indice_key='spconv_down2',
conv_type='SparseConv3d')
@auto_fp16(apply_to=('voxel_features', ))
def forward(self, voxel_features, coors, batch_size):
"""Forward of SparseEncoder.
Args:
voxel_features (torch.Tensor): Voxel features in shape (N, C).
coors (torch.Tensor): Coordinates in shape (N, 4),
the columns in the order of (batch_idx, z_idx, y_idx, x_idx).
batch_size (int): Batch size.
Returns:
dict: Backbone features.
"""
coors = coors.int()
input_sp_tensor = SparseConvTensor(voxel_features, coors,
self.sparse_shape, batch_size)
x = self.conv_input(input_sp_tensor)
encode_features = []
for encoder_layer in self.encoder_layers:
x = encoder_layer(x)
encode_features.append(x)
# for detection head
# [200, 176, 5] -> [200, 176, 2]
out = self.conv_out(encode_features[-1])
spatial_features = out.dense()
N, C, D, H, W = spatial_features.shape
spatial_features = spatial_features.view(N, C * D, H, W)
return spatial_features
def make_encoder_layers(self,
make_block,
norm_cfg,
in_channels,
block_type='conv_module',
conv_cfg=dict(type='SubMConv3d')):
"""make encoder layers using sparse convs.
Args:
make_block (method): A bounded function to build blocks.
norm_cfg (dict[str]): Config of normalization layer.
in_channels (int): The number of encoder input channels.
block_type (str, optional): Type of the block to use.
Defaults to 'conv_module'.
conv_cfg (dict, optional): Config of conv layer. Defaults to
dict(type='SubMConv3d').
Returns:
int: The number of encoder output channels.
"""
assert block_type in ['conv_module', 'basicblock']
self.encoder_layers = SparseSequential()
for i, blocks in enumerate(self.encoder_channels):
blocks_list = []
for j, out_channels in enumerate(tuple(blocks)):
padding = tuple(self.encoder_paddings[i])[j]
# each stage started with a spconv layer
# except the first stage
if i != 0 and j == 0 and block_type == 'conv_module':
blocks_list.append(
make_block(
in_channels,
out_channels,
3,
norm_cfg=norm_cfg,
stride=2,
padding=padding,
indice_key=f'spconv{i + 1}',
conv_type='SparseConv3d'))
elif block_type == 'basicblock':
if j == len(blocks) - 1 and i != len(
self.encoder_channels) - 1:
blocks_list.append(
make_block(
in_channels,
out_channels,
3,
norm_cfg=norm_cfg,
stride=2,
padding=padding,
indice_key=f'spconv{i + 1}',
conv_type='SparseConv3d'))
else:
blocks_list.append(
SparseBasicBlock(
out_channels,
out_channels,
norm_cfg=norm_cfg,
conv_cfg=conv_cfg))
else:
blocks_list.append(
make_block(
in_channels,
out_channels,
3,
norm_cfg=norm_cfg,
padding=padding,
indice_key=f'subm{i + 1}',
conv_type='SubMConv3d'))
in_channels = out_channels
stage_name = f'encoder_layer{i + 1}'
stage_layers = SparseSequential(*blocks_list)
self.encoder_layers.add_module(stage_name, stage_layers)
return out_channels
@MIDDLE_ENCODERS.register_module()
class SparseEncoderSASSD(SparseEncoder):
r"""Sparse encoder for `SASSD <https://github.com/skyhehe123/SA-SSD>`_
Args:
in_channels (int): The number of input channels.
sparse_shape (list[int]): The sparse shape of input tensor.
order (list[str], optional): Order of conv module.
Defaults to ('conv', 'norm', 'act').
norm_cfg (dict, optional): Config of normalization layer. Defaults to
dict(type='BN1d', eps=1e-3, momentum=0.01).
base_channels (int, optional): Out channels for conv_input layer.
Defaults to 16.
output_channels (int, optional): Out channels for conv_out layer.
Defaults to 128.
encoder_channels (tuple[tuple[int]], optional):
Convolutional channels of each encode block.
Defaults to ((16, ), (32, 32, 32), (64, 64, 64), (64, 64, 64)).
encoder_paddings (tuple[tuple[int]], optional):
Paddings of each encode block.
Defaults to ((1, ), (1, 1, 1), (1, 1, 1), ((0, 1, 1), 1, 1)).
block_type (str, optional): Type of the block to use.
Defaults to 'conv_module'.
"""
def __init__(self,
in_channels,
sparse_shape,
order=('conv', 'norm', 'act'),
norm_cfg=dict(type='BN1d', eps=1e-3, momentum=0.01),
base_channels=16,
output_channels=128,
encoder_channels=((16, ), (32, 32, 32), (64, 64, 64), (64, 64,
64)),
encoder_paddings=((1, ), (1, 1, 1), (1, 1, 1), ((0, 1, 1), 1,
1)),
block_type='conv_module'):
super(SparseEncoderSASSD, self).__init__(
in_channels=in_channels,
sparse_shape=sparse_shape,
order=order,
norm_cfg=norm_cfg,
base_channels=base_channels,
output_channels=output_channels,
encoder_channels=encoder_channels,
encoder_paddings=encoder_paddings,
block_type=block_type)
self.point_fc = nn.Linear(112, 64, bias=False)
self.point_cls = nn.Linear(64, 1, bias=False)
self.point_reg = nn.Linear(64, 3, bias=False)
@auto_fp16(apply_to=('voxel_features', ))
def forward(self, voxel_features, coors, batch_size, test_mode=False):
"""Forward of SparseEncoder.
Args:
voxel_features (torch.Tensor): Voxel features in shape (N, C).
coors (torch.Tensor): Coordinates in shape (N, 4),
the columns in the order of (batch_idx, z_idx, y_idx, x_idx).
batch_size (int): Batch size.
test_mode (bool, optional): Whether in test mode.
Defaults to False.
Returns:
dict: Backbone features.
tuple[torch.Tensor]: Mean feature value of the points,
Classification result of the points,
Regression offsets of the points.
"""
coors = coors.int()
input_sp_tensor = SparseConvTensor(voxel_features, coors,
self.sparse_shape, batch_size)
x = self.conv_input(input_sp_tensor)
encode_features = []
for encoder_layer in self.encoder_layers:
x = encoder_layer(x)
encode_features.append(x)
# for detection head
# [200, 176, 5] -> [200, 176, 2]
out = self.conv_out(encode_features[-1])
spatial_features = out.dense()
N, C, D, H, W = spatial_features.shape
spatial_features = spatial_features.view(N, C * D, H, W)
if test_mode:
return spatial_features, None
points_mean = torch.zeros_like(voxel_features)
points_mean[:, 0] = coors[:, 0]
points_mean[:, 1:] = voxel_features[:, :3]
# auxiliary network
p0 = self.make_auxiliary_points(
encode_features[0],
points_mean,
offset=(0, -40., -3.),
voxel_size=(.1, .1, .2))
p1 = self.make_auxiliary_points(
encode_features[1],
points_mean,
offset=(0, -40., -3.),
voxel_size=(.2, .2, .4))
p2 = self.make_auxiliary_points(
encode_features[2],
points_mean,
offset=(0, -40., -3.),
voxel_size=(.4, .4, .8))
pointwise = torch.cat([p0, p1, p2], dim=-1)
pointwise = self.point_fc(pointwise)
point_cls = self.point_cls(pointwise)
point_reg = self.point_reg(pointwise)
point_misc = (points_mean, point_cls, point_reg)
return spatial_features, point_misc
def get_auxiliary_targets(self, nxyz, gt_boxes3d, enlarge=1.0):
"""Get auxiliary target.
Args:
nxyz (torch.Tensor): Mean features of the points.
gt_boxes3d (torch.Tensor): Coordinates in shape (N, 4),
the columns in the order of (batch_idx, z_idx, y_idx, x_idx).
enlarge (int, optional): Enlaged scale. Defaults to 1.0.
Returns:
tuple[torch.Tensor]: Label of the points and
center offsets of the points.
"""
center_offsets = list()
pts_labels = list()
for i in range(len(gt_boxes3d)):
boxes3d = gt_boxes3d[i].tensor.cpu()
idx = torch.nonzero(nxyz[:, 0] == i).view(-1)
new_xyz = nxyz[idx, 1:].cpu()
boxes3d[:, 3:6] *= enlarge
pts_in_flag, center_offset = self.calculate_pts_offsets(
new_xyz, boxes3d)
pts_label = pts_in_flag.max(0)[0].byte()
pts_labels.append(pts_label)
center_offsets.append(center_offset)
center_offsets = torch.cat(center_offsets).cuda()
pts_labels = torch.cat(pts_labels).to(center_offsets.device)
return pts_labels, center_offsets
def calculate_pts_offsets(self, points, boxes):
"""Find all boxes in which each point is, as well as the offsets from
the box centers.
Args:
points (torch.Tensor): [M, 3], [x, y, z] in LiDAR/DEPTH coordinate
boxes (torch.Tensor): [T, 7],
num_valid_boxes <= T, [x, y, z, x_size, y_size, z_size, rz],
(x, y, z) is the bottom center.
Returns:
tuple[torch.Tensor]: Point indices of boxes with the shape of
(T, M). Default background = 0.
And offsets from the box centers of points,
if it belows to the box, with the shape of (M, 3).
Default background = 0.
"""
boxes_num = len(boxes)
pts_num = len(points)
points = points.cuda()
boxes = boxes.to(points.device)
box_idxs_of_pts = points_in_boxes_all(points[None, ...], boxes[None,
...])
pts_indices = box_idxs_of_pts.squeeze(0).transpose(0, 1)
center_offsets = torch.zeros_like(points).to(points.device)
for i in range(boxes_num):
for j in range(pts_num):
if pts_indices[i][j] == 1:
center_offsets[j][0] = points[j][0] - boxes[i][0]
center_offsets[j][1] = points[j][1] - boxes[i][1]
center_offsets[j][2] = (
points[j][2] - (boxes[i][2] + boxes[i][2] / 2.0))
return pts_indices.cpu(), center_offsets.cpu()
def aux_loss(self, points, point_cls, point_reg, gt_bboxes):
"""Calculate auxiliary loss.
Args:
points (torch.Tensor): Mean feature value of the points.
point_cls (torch.Tensor): Classification result of the points.
point_reg (torch.Tensor): Regression offsets of the points.
gt_bboxes (list[:obj:`BaseInstance3DBoxes`]): Ground truth
boxes for each sample.
Returns:
dict: Backbone features.
"""
num_boxes = len(gt_bboxes)
pts_labels, center_targets = self.get_auxiliary_targets(
points, gt_bboxes)
rpn_cls_target = pts_labels.long()
pos = (pts_labels > 0).float()
neg = (pts_labels == 0).float()
pos_normalizer = pos.sum().clamp(min=1.0)
cls_weights = pos + neg
reg_weights = pos
reg_weights = reg_weights / pos_normalizer
aux_loss_cls = sigmoid_focal_loss(
point_cls,
rpn_cls_target,
weight=cls_weights,
avg_factor=pos_normalizer)
aux_loss_cls /= num_boxes
weight = reg_weights[..., None]
aux_loss_reg = smooth_l1_loss(point_reg, center_targets, beta=1 / 9.)
aux_loss_reg = torch.sum(aux_loss_reg * weight)[None]
aux_loss_reg /= num_boxes
aux_loss_cls, aux_loss_reg = [aux_loss_cls], [aux_loss_reg]
return dict(aux_loss_cls=aux_loss_cls, aux_loss_reg=aux_loss_reg)
def make_auxiliary_points(self,
source_tensor,
target,
offset=(0., -40., -3.),
voxel_size=(.05, .05, .1)):
"""Make auxiliary points for loss computation.
Args:
source_tensor (torch.Tensor): (M, C) features to be propigated.
target (torch.Tensor): (N, 4) bxyz positions of the
target features.
offset (tuple[float], optional): Voxelization offset.
Defaults to (0., -40., -3.)
voxel_size (tuple[float], optional): Voxelization size.
Defaults to (.05, .05, .1)
Returns:
torch.Tensor: (N, C) tensor of the features of the target features.
"""
# Tansfer tensor to points
source = source_tensor.indices.float()
offset = torch.Tensor(offset).to(source.device)
voxel_size = torch.Tensor(voxel_size).to(source.device)
source[:, 1:] = (
source[:, [3, 2, 1]] * voxel_size + offset + .5 * voxel_size)
source_feats = source_tensor.features[None, ...].transpose(1, 2)
# Interplate auxiliary points
dist, idx = three_nn(target[None, ...], source[None, ...])
dist_recip = 1.0 / (dist + 1e-8)
norm = torch.sum(dist_recip, dim=2, keepdim=True)
weight = dist_recip / norm
new_features = three_interpolate(source_feats.contiguous(), idx,
weight)
return new_features.squeeze(0).transpose(0, 1)