-
Notifications
You must be signed in to change notification settings - Fork 1.6k
/
waymo_dataset.py
549 lines (492 loc) · 22.6 KB
/
waymo_dataset.py
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
266
267
268
269
270
271
272
273
274
275
276
277
278
279
280
281
282
283
284
285
286
287
288
289
290
291
292
293
294
295
296
297
298
299
300
301
302
303
304
305
306
307
308
309
310
311
312
313
314
315
316
317
318
319
320
321
322
323
324
325
326
327
328
329
330
331
332
333
334
335
336
337
338
339
340
341
342
343
344
345
346
347
348
349
350
351
352
353
354
355
356
357
358
359
360
361
362
363
364
365
366
367
368
369
370
371
372
373
374
375
376
377
378
379
380
381
382
383
384
385
386
387
388
389
390
391
392
393
394
395
396
397
398
399
400
401
402
403
404
405
406
407
408
409
410
411
412
413
414
415
416
417
418
419
420
421
422
423
424
425
426
427
428
429
430
431
432
433
434
435
436
437
438
439
440
441
442
443
444
445
446
447
448
449
450
451
452
453
454
455
456
457
458
459
460
461
462
463
464
465
466
467
468
469
470
471
472
473
474
475
476
477
478
479
480
481
482
483
484
485
486
487
488
489
490
491
492
493
494
495
496
497
498
499
500
501
502
503
504
505
506
507
508
509
510
511
512
513
514
515
516
517
518
519
520
521
522
523
524
525
526
527
528
529
530
531
532
533
534
535
536
537
538
539
540
541
542
543
544
545
546
547
548
549
# Copyright (c) OpenMMLab. All rights reserved.
import os
import tempfile
from os import path as osp
import mmcv
import numpy as np
import torch
from mmcv.utils import print_log
from ..core.bbox import Box3DMode, points_cam2img
from .builder import DATASETS
from .kitti_dataset import KittiDataset
@DATASETS.register_module()
class WaymoDataset(KittiDataset):
"""Waymo Dataset.
This class serves as the API for experiments on the Waymo Dataset.
Please refer to `<https://waymo.com/open/download/>`_for data downloading.
It is recommended to symlink the dataset root to $MMDETECTION3D/data and
organize them as the doc shows.
Args:
data_root (str): Path of dataset root.
ann_file (str): Path of annotation file.
split (str): Split of input data.
pts_prefix (str, optional): Prefix of points files.
Defaults to 'velodyne'.
pipeline (list[dict], optional): Pipeline used for data processing.
Defaults to None.
classes (tuple[str], optional): Classes used in the dataset.
Defaults to None.
modality (dict, optional): Modality to specify the sensor data used
as input. Defaults to None.
box_type_3d (str, optional): Type of 3D box of this dataset.
Based on the `box_type_3d`, the dataset will encapsulate the box
to its original format then converted them to `box_type_3d`.
Defaults to 'LiDAR' in this dataset. Available options includes
- 'LiDAR': box in LiDAR coordinates
- 'Depth': box in depth coordinates, usually for indoor dataset
- 'Camera': box in camera coordinates
filter_empty_gt (bool, optional): Whether to filter empty GT.
Defaults to True.
test_mode (bool, optional): Whether the dataset is in test mode.
Defaults to False.
pcd_limit_range (list(float), optional): The range of point cloud used
to filter invalid predicted boxes.
Default: [-85, -85, -5, 85, 85, 5].
"""
CLASSES = ('Car', 'Cyclist', 'Pedestrian')
def __init__(self,
data_root,
ann_file,
split,
pts_prefix='velodyne',
pipeline=None,
classes=None,
modality=None,
box_type_3d='LiDAR',
filter_empty_gt=True,
test_mode=False,
load_interval=1,
pcd_limit_range=[-85, -85, -5, 85, 85, 5],
**kwargs):
super().__init__(
data_root=data_root,
ann_file=ann_file,
split=split,
pts_prefix=pts_prefix,
pipeline=pipeline,
classes=classes,
modality=modality,
box_type_3d=box_type_3d,
filter_empty_gt=filter_empty_gt,
test_mode=test_mode,
pcd_limit_range=pcd_limit_range,
**kwargs)
# to load a subset, just set the load_interval in the dataset config
self.data_infos = self.data_infos[::load_interval]
if hasattr(self, 'flag'):
self.flag = self.flag[::load_interval]
def _get_pts_filename(self, idx):
pts_filename = osp.join(self.root_split, self.pts_prefix,
f'{idx:07d}.bin')
return pts_filename
def get_data_info(self, index):
"""Get data info according to the given index.
Args:
index (int): Index of the sample data to get.
Returns:
dict: Standard input_dict consists of the
data information.
- sample_idx (str): sample index
- pts_filename (str): filename of point clouds
- img_prefix (str): prefix of image files
- img_info (dict): image info
- lidar2img (list[np.ndarray], optional): transformations from
lidar to different cameras
- ann_info (dict): annotation info
"""
info = self.data_infos[index]
sample_idx = info['image']['image_idx']
img_filename = os.path.join(self.data_root,
info['image']['image_path'])
# TODO: consider use torch.Tensor only
rect = info['calib']['R0_rect'].astype(np.float32)
Trv2c = info['calib']['Tr_velo_to_cam'].astype(np.float32)
P0 = info['calib']['P0'].astype(np.float32)
lidar2img = P0 @ rect @ Trv2c
pts_filename = self._get_pts_filename(sample_idx)
input_dict = dict(
sample_idx=sample_idx,
pts_filename=pts_filename,
img_prefix=None,
img_info=dict(filename=img_filename),
lidar2img=lidar2img)
if not self.test_mode:
annos = self.get_ann_info(index)
input_dict['ann_info'] = annos
return input_dict
def format_results(self,
outputs,
pklfile_prefix=None,
submission_prefix=None,
data_format='waymo'):
"""Format the results to pkl file.
Args:
outputs (list[dict]): Testing results of the dataset.
pklfile_prefix (str): The prefix of pkl files. It includes
the file path and the prefix of filename, e.g., "a/b/prefix".
If not specified, a temp file will be created. Default: None.
submission_prefix (str): The prefix of submitted files. It
includes the file path and the prefix of filename, e.g.,
"a/b/prefix". If not specified, a temp file will be created.
Default: None.
data_format (str, optional): Output data format.
Default: 'waymo'. Another supported choice is 'kitti'.
Returns:
tuple: (result_files, tmp_dir), result_files is a dict containing
the json filepaths, tmp_dir is the temporal directory created
for saving json files when jsonfile_prefix is not specified.
"""
if pklfile_prefix is None:
tmp_dir = tempfile.TemporaryDirectory()
pklfile_prefix = osp.join(tmp_dir.name, 'results')
else:
tmp_dir = None
assert ('waymo' in data_format or 'kitti' in data_format), \
f'invalid data_format {data_format}'
if (not isinstance(outputs[0], dict)) or 'img_bbox' in outputs[0]:
raise TypeError('Not supported type for reformat results.')
elif 'pts_bbox' in outputs[0]:
result_files = dict()
for name in outputs[0]:
results_ = [out[name] for out in outputs]
pklfile_prefix_ = pklfile_prefix + name
if submission_prefix is not None:
submission_prefix_ = f'{submission_prefix}_{name}'
else:
submission_prefix_ = None
result_files_ = self.bbox2result_kitti(results_, self.CLASSES,
pklfile_prefix_,
submission_prefix_)
result_files[name] = result_files_
else:
result_files = self.bbox2result_kitti(outputs, self.CLASSES,
pklfile_prefix,
submission_prefix)
if 'waymo' in data_format:
from ..core.evaluation.waymo_utils.prediction_kitti_to_waymo import \
KITTI2Waymo # noqa
waymo_root = osp.join(
self.data_root.split('kitti_format')[0], 'waymo_format')
if self.split == 'training':
waymo_tfrecords_dir = osp.join(waymo_root, 'validation')
prefix = '1'
elif self.split == 'testing':
waymo_tfrecords_dir = osp.join(waymo_root, 'testing')
prefix = '2'
else:
raise ValueError('Not supported split value.')
save_tmp_dir = tempfile.TemporaryDirectory()
waymo_results_save_dir = save_tmp_dir.name
waymo_results_final_path = f'{pklfile_prefix}.bin'
if 'pts_bbox' in result_files:
converter = KITTI2Waymo(result_files['pts_bbox'],
waymo_tfrecords_dir,
waymo_results_save_dir,
waymo_results_final_path, prefix)
else:
converter = KITTI2Waymo(result_files, waymo_tfrecords_dir,
waymo_results_save_dir,
waymo_results_final_path, prefix)
converter.convert()
save_tmp_dir.cleanup()
return result_files, tmp_dir
def evaluate(self,
results,
metric='waymo',
logger=None,
pklfile_prefix=None,
submission_prefix=None,
show=False,
out_dir=None,
pipeline=None):
"""Evaluation in KITTI protocol.
Args:
results (list[dict]): Testing results of the dataset.
metric (str | list[str], optional): Metrics to be evaluated.
Default: 'waymo'. Another supported metric is 'kitti'.
logger (logging.Logger | str, optional): Logger used for printing
related information during evaluation. Default: None.
pklfile_prefix (str, optional): The prefix of pkl files including
the file path and the prefix of filename, e.g., "a/b/prefix".
If not specified, a temp file will be created. Default: None.
submission_prefix (str, optional): The prefix of submission data.
If not specified, the submission data will not be generated.
show (bool, optional): Whether to visualize.
Default: False.
out_dir (str, optional): Path to save the visualization results.
Default: None.
pipeline (list[dict], optional): raw data loading for showing.
Default: None.
Returns:
dict[str: float]: results of each evaluation metric
"""
assert ('waymo' in metric or 'kitti' in metric), \
f'invalid metric {metric}'
if 'kitti' in metric:
result_files, tmp_dir = self.format_results(
results,
pklfile_prefix,
submission_prefix,
data_format='kitti')
from mmdet3d.core.evaluation import kitti_eval
gt_annos = [info['annos'] for info in self.data_infos]
if isinstance(result_files, dict):
ap_dict = dict()
for name, result_files_ in result_files.items():
eval_types = ['bev', '3d']
ap_result_str, ap_dict_ = kitti_eval(
gt_annos,
result_files_,
self.CLASSES,
eval_types=eval_types)
for ap_type, ap in ap_dict_.items():
ap_dict[f'{name}/{ap_type}'] = float(
'{:.4f}'.format(ap))
print_log(
f'Results of {name}:\n' + ap_result_str, logger=logger)
else:
ap_result_str, ap_dict = kitti_eval(
gt_annos,
result_files,
self.CLASSES,
eval_types=['bev', '3d'])
print_log('\n' + ap_result_str, logger=logger)
if 'waymo' in metric:
waymo_root = osp.join(
self.data_root.split('kitti_format')[0], 'waymo_format')
if pklfile_prefix is None:
eval_tmp_dir = tempfile.TemporaryDirectory()
pklfile_prefix = osp.join(eval_tmp_dir.name, 'results')
else:
eval_tmp_dir = None
result_files, tmp_dir = self.format_results(
results,
pklfile_prefix,
submission_prefix,
data_format='waymo')
import subprocess
ret_bytes = subprocess.check_output(
'mmdet3d/core/evaluation/waymo_utils/' +
f'compute_detection_metrics_main {pklfile_prefix}.bin ' +
f'{waymo_root}/gt.bin',
shell=True)
ret_texts = ret_bytes.decode('utf-8')
print_log(ret_texts)
# parse the text to get ap_dict
ap_dict = {
'Vehicle/L1 mAP': 0,
'Vehicle/L1 mAPH': 0,
'Vehicle/L2 mAP': 0,
'Vehicle/L2 mAPH': 0,
'Pedestrian/L1 mAP': 0,
'Pedestrian/L1 mAPH': 0,
'Pedestrian/L2 mAP': 0,
'Pedestrian/L2 mAPH': 0,
'Sign/L1 mAP': 0,
'Sign/L1 mAPH': 0,
'Sign/L2 mAP': 0,
'Sign/L2 mAPH': 0,
'Cyclist/L1 mAP': 0,
'Cyclist/L1 mAPH': 0,
'Cyclist/L2 mAP': 0,
'Cyclist/L2 mAPH': 0,
'Overall/L1 mAP': 0,
'Overall/L1 mAPH': 0,
'Overall/L2 mAP': 0,
'Overall/L2 mAPH': 0
}
mAP_splits = ret_texts.split('mAP ')
mAPH_splits = ret_texts.split('mAPH ')
for idx, key in enumerate(ap_dict.keys()):
split_idx = int(idx / 2) + 1
if idx % 2 == 0: # mAP
ap_dict[key] = float(mAP_splits[split_idx].split(']')[0])
else: # mAPH
ap_dict[key] = float(mAPH_splits[split_idx].split(']')[0])
ap_dict['Overall/L1 mAP'] = \
(ap_dict['Vehicle/L1 mAP'] + ap_dict['Pedestrian/L1 mAP'] +
ap_dict['Cyclist/L1 mAP']) / 3
ap_dict['Overall/L1 mAPH'] = \
(ap_dict['Vehicle/L1 mAPH'] + ap_dict['Pedestrian/L1 mAPH'] +
ap_dict['Cyclist/L1 mAPH']) / 3
ap_dict['Overall/L2 mAP'] = \
(ap_dict['Vehicle/L2 mAP'] + ap_dict['Pedestrian/L2 mAP'] +
ap_dict['Cyclist/L2 mAP']) / 3
ap_dict['Overall/L2 mAPH'] = \
(ap_dict['Vehicle/L2 mAPH'] + ap_dict['Pedestrian/L2 mAPH'] +
ap_dict['Cyclist/L2 mAPH']) / 3
if eval_tmp_dir is not None:
eval_tmp_dir.cleanup()
if tmp_dir is not None:
tmp_dir.cleanup()
if show or out_dir:
self.show(results, out_dir, show=show, pipeline=pipeline)
return ap_dict
def bbox2result_kitti(self,
net_outputs,
class_names,
pklfile_prefix=None,
submission_prefix=None):
"""Convert results to kitti format for evaluation and test submission.
Args:
net_outputs (List[np.ndarray]): list of array storing the
bbox and score
class_nanes (List[String]): A list of class names
pklfile_prefix (str): The prefix of pkl file.
submission_prefix (str): The prefix of submission file.
Returns:
List[dict]: A list of dict have the kitti 3d format
"""
assert len(net_outputs) == len(self.data_infos), \
'invalid list length of network outputs'
if submission_prefix is not None:
mmcv.mkdir_or_exist(submission_prefix)
det_annos = []
print('\nConverting prediction to KITTI format')
for idx, pred_dicts in enumerate(
mmcv.track_iter_progress(net_outputs)):
annos = []
info = self.data_infos[idx]
sample_idx = info['image']['image_idx']
image_shape = info['image']['image_shape'][:2]
box_dict = self.convert_valid_bboxes(pred_dicts, info)
if len(box_dict['bbox']) > 0:
box_2d_preds = box_dict['bbox']
box_preds = box_dict['box3d_camera']
scores = box_dict['scores']
box_preds_lidar = box_dict['box3d_lidar']
label_preds = box_dict['label_preds']
anno = {
'name': [],
'truncated': [],
'occluded': [],
'alpha': [],
'bbox': [],
'dimensions': [],
'location': [],
'rotation_y': [],
'score': []
}
for box, box_lidar, bbox, score, label in zip(
box_preds, box_preds_lidar, box_2d_preds, scores,
label_preds):
bbox[2:] = np.minimum(bbox[2:], image_shape[::-1])
bbox[:2] = np.maximum(bbox[:2], [0, 0])
anno['name'].append(class_names[int(label)])
anno['truncated'].append(0.0)
anno['occluded'].append(0)
anno['alpha'].append(
-np.arctan2(-box_lidar[1], box_lidar[0]) + box[6])
anno['bbox'].append(bbox)
anno['dimensions'].append(box[3:6])
anno['location'].append(box[:3])
anno['rotation_y'].append(box[6])
anno['score'].append(score)
anno = {k: np.stack(v) for k, v in anno.items()}
annos.append(anno)
if submission_prefix is not None:
curr_file = f'{submission_prefix}/{sample_idx:07d}.txt'
with open(curr_file, 'w') as f:
bbox = anno['bbox']
loc = anno['location']
dims = anno['dimensions'] # lhw -> hwl
for idx in range(len(bbox)):
print(
'{} -1 -1 {:.4f} {:.4f} {:.4f} {:.4f} '
'{:.4f} {:.4f} {:.4f} '
'{:.4f} {:.4f} {:.4f} {:.4f} {:.4f} {:.4f}'.
format(anno['name'][idx], anno['alpha'][idx],
bbox[idx][0], bbox[idx][1],
bbox[idx][2], bbox[idx][3],
dims[idx][1], dims[idx][2],
dims[idx][0], loc[idx][0], loc[idx][1],
loc[idx][2], anno['rotation_y'][idx],
anno['score'][idx]),
file=f)
else:
annos.append({
'name': np.array([]),
'truncated': np.array([]),
'occluded': np.array([]),
'alpha': np.array([]),
'bbox': np.zeros([0, 4]),
'dimensions': np.zeros([0, 3]),
'location': np.zeros([0, 3]),
'rotation_y': np.array([]),
'score': np.array([]),
})
annos[-1]['sample_idx'] = np.array(
[sample_idx] * len(annos[-1]['score']), dtype=np.int64)
det_annos += annos
if pklfile_prefix is not None:
if not pklfile_prefix.endswith(('.pkl', '.pickle')):
out = f'{pklfile_prefix}.pkl'
mmcv.dump(det_annos, out)
print(f'Result is saved to {out}.')
return det_annos
def convert_valid_bboxes(self, box_dict, info):
"""Convert the boxes into valid format.
Args:
box_dict (dict): Bounding boxes to be converted.
- boxes_3d (:obj:``LiDARInstance3DBoxes``): 3D bounding boxes.
- scores_3d (np.ndarray): Scores of predicted boxes.
- labels_3d (np.ndarray): Class labels of predicted boxes.
info (dict): Dataset information dictionary.
Returns:
dict: Valid boxes after conversion.
- bbox (np.ndarray): 2D bounding boxes (in camera 0).
- box3d_camera (np.ndarray): 3D boxes in camera coordinates.
- box3d_lidar (np.ndarray): 3D boxes in lidar coordinates.
- scores (np.ndarray): Scores of predicted boxes.
- label_preds (np.ndarray): Class labels of predicted boxes.
- sample_idx (np.ndarray): Sample index.
"""
# TODO: refactor this function
box_preds = box_dict['boxes_3d']
scores = box_dict['scores_3d']
labels = box_dict['labels_3d']
sample_idx = info['image']['image_idx']
box_preds.limit_yaw(offset=0.5, period=np.pi * 2)
if len(box_preds) == 0:
return dict(
bbox=np.zeros([0, 4]),
box3d_camera=np.zeros([0, 7]),
box3d_lidar=np.zeros([0, 7]),
scores=np.zeros([0]),
label_preds=np.zeros([0, 4]),
sample_idx=sample_idx)
rect = info['calib']['R0_rect'].astype(np.float32)
Trv2c = info['calib']['Tr_velo_to_cam'].astype(np.float32)
P0 = info['calib']['P0'].astype(np.float32)
P0 = box_preds.tensor.new_tensor(P0)
box_preds_camera = box_preds.convert_to(Box3DMode.CAM, rect @ Trv2c)
box_corners = box_preds_camera.corners
box_corners_in_image = points_cam2img(box_corners, P0)
# box_corners_in_image: [N, 8, 2]
minxy = torch.min(box_corners_in_image, dim=1)[0]
maxxy = torch.max(box_corners_in_image, dim=1)[0]
box_2d_preds = torch.cat([minxy, maxxy], dim=1)
# Post-processing
# check box_preds
limit_range = box_preds.tensor.new_tensor(self.pcd_limit_range)
valid_pcd_inds = ((box_preds.center > limit_range[:3]) &
(box_preds.center < limit_range[3:]))
valid_inds = valid_pcd_inds.all(-1)
if valid_inds.sum() > 0:
return dict(
bbox=box_2d_preds[valid_inds, :].numpy(),
box3d_camera=box_preds_camera[valid_inds].tensor.numpy(),
box3d_lidar=box_preds[valid_inds].tensor.numpy(),
scores=scores[valid_inds].numpy(),
label_preds=labels[valid_inds].numpy(),
sample_idx=sample_idx,
)
else:
return dict(
bbox=np.zeros([0, 4]),
box3d_camera=np.zeros([0, 7]),
box3d_lidar=np.zeros([0, 7]),
scores=np.zeros([0]),
label_preds=np.zeros([0, 4]),
sample_idx=sample_idx,
)