-
Notifications
You must be signed in to change notification settings - Fork 1.6k
/
transforms_3d.py
1853 lines (1518 loc) · 71.5 KB
/
transforms_3d.py
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
266
267
268
269
270
271
272
273
274
275
276
277
278
279
280
281
282
283
284
285
286
287
288
289
290
291
292
293
294
295
296
297
298
299
300
301
302
303
304
305
306
307
308
309
310
311
312
313
314
315
316
317
318
319
320
321
322
323
324
325
326
327
328
329
330
331
332
333
334
335
336
337
338
339
340
341
342
343
344
345
346
347
348
349
350
351
352
353
354
355
356
357
358
359
360
361
362
363
364
365
366
367
368
369
370
371
372
373
374
375
376
377
378
379
380
381
382
383
384
385
386
387
388
389
390
391
392
393
394
395
396
397
398
399
400
401
402
403
404
405
406
407
408
409
410
411
412
413
414
415
416
417
418
419
420
421
422
423
424
425
426
427
428
429
430
431
432
433
434
435
436
437
438
439
440
441
442
443
444
445
446
447
448
449
450
451
452
453
454
455
456
457
458
459
460
461
462
463
464
465
466
467
468
469
470
471
472
473
474
475
476
477
478
479
480
481
482
483
484
485
486
487
488
489
490
491
492
493
494
495
496
497
498
499
500
501
502
503
504
505
506
507
508
509
510
511
512
513
514
515
516
517
518
519
520
521
522
523
524
525
526
527
528
529
530
531
532
533
534
535
536
537
538
539
540
541
542
543
544
545
546
547
548
549
550
551
552
553
554
555
556
557
558
559
560
561
562
563
564
565
566
567
568
569
570
571
572
573
574
575
576
577
578
579
580
581
582
583
584
585
586
587
588
589
590
591
592
593
594
595
596
597
598
599
600
601
602
603
604
605
606
607
608
609
610
611
612
613
614
615
616
617
618
619
620
621
622
623
624
625
626
627
628
629
630
631
632
633
634
635
636
637
638
639
640
641
642
643
644
645
646
647
648
649
650
651
652
653
654
655
656
657
658
659
660
661
662
663
664
665
666
667
668
669
670
671
672
673
674
675
676
677
678
679
680
681
682
683
684
685
686
687
688
689
690
691
692
693
694
695
696
697
698
699
700
701
702
703
704
705
706
707
708
709
710
711
712
713
714
715
716
717
718
719
720
721
722
723
724
725
726
727
728
729
730
731
732
733
734
735
736
737
738
739
740
741
742
743
744
745
746
747
748
749
750
751
752
753
754
755
756
757
758
759
760
761
762
763
764
765
766
767
768
769
770
771
772
773
774
775
776
777
778
779
780
781
782
783
784
785
786
787
788
789
790
791
792
793
794
795
796
797
798
799
800
801
802
803
804
805
806
807
808
809
810
811
812
813
814
815
816
817
818
819
820
821
822
823
824
825
826
827
828
829
830
831
832
833
834
835
836
837
838
839
840
841
842
843
844
845
846
847
848
849
850
851
852
853
854
855
856
857
858
859
860
861
862
863
864
865
866
867
868
869
870
871
872
873
874
875
876
877
878
879
880
881
882
883
884
885
886
887
888
889
890
891
892
893
894
895
896
897
898
899
900
901
902
903
904
905
906
907
908
909
910
911
912
913
914
915
916
917
918
919
920
921
922
923
924
925
926
927
928
929
930
931
932
933
934
935
936
937
938
939
940
941
942
943
944
945
946
947
948
949
950
951
952
953
954
955
956
957
958
959
960
961
962
963
964
965
966
967
968
969
970
971
972
973
974
975
976
977
978
979
980
981
982
983
984
985
986
987
988
989
990
991
992
993
994
995
996
997
998
999
1000
# Copyright (c) OpenMMLab. All rights reserved.
import random
import warnings
import cv2
import numpy as np
from mmcv import is_tuple_of
from mmcv.utils import build_from_cfg
from mmdet3d.core import VoxelGenerator
from mmdet3d.core.bbox import (CameraInstance3DBoxes, DepthInstance3DBoxes,
LiDARInstance3DBoxes, box_np_ops)
from mmdet3d.datasets.pipelines.compose import Compose
from mmdet.datasets.pipelines import RandomCrop, RandomFlip, Rotate
from ..builder import OBJECTSAMPLERS, PIPELINES
from .data_augment_utils import noise_per_object_v3_
@PIPELINES.register_module()
class RandomDropPointsColor(object):
r"""Randomly set the color of points to all zeros.
Once this transform is executed, all the points' color will be dropped.
Refer to `PAConv <https://github.com/CVMI-Lab/PAConv/blob/main/scene_seg/
util/transform.py#L223>`_ for more details.
Args:
drop_ratio (float, optional): The probability of dropping point colors.
Defaults to 0.2.
"""
def __init__(self, drop_ratio=0.2):
assert isinstance(drop_ratio, (int, float)) and 0 <= drop_ratio <= 1, \
f'invalid drop_ratio value {drop_ratio}'
self.drop_ratio = drop_ratio
def __call__(self, input_dict):
"""Call function to drop point colors.
Args:
input_dict (dict): Result dict from loading pipeline.
Returns:
dict: Results after color dropping,
'points' key is updated in the result dict.
"""
points = input_dict['points']
assert points.attribute_dims is not None and \
'color' in points.attribute_dims, \
'Expect points have color attribute'
# this if-expression is a bit strange
# `RandomDropPointsColor` is used in training 3D segmentor PAConv
# we discovered in our experiments that, using
# `if np.random.rand() > 1.0 - self.drop_ratio` consistently leads to
# better results than using `if np.random.rand() < self.drop_ratio`
# so we keep this hack in our codebase
if np.random.rand() > 1.0 - self.drop_ratio:
points.color = points.color * 0.0
return input_dict
def __repr__(self):
"""str: Return a string that describes the module."""
repr_str = self.__class__.__name__
repr_str += f'(drop_ratio={self.drop_ratio})'
return repr_str
@PIPELINES.register_module()
class RandomFlip3D(RandomFlip):
"""Flip the points & bbox.
If the input dict contains the key "flip", then the flag will be used,
otherwise it will be randomly decided by a ratio specified in the init
method.
Args:
sync_2d (bool, optional): Whether to apply flip according to the 2D
images. If True, it will apply the same flip as that to 2D images.
If False, it will decide whether to flip randomly and independently
to that of 2D images. Defaults to True.
flip_ratio_bev_horizontal (float, optional): The flipping probability
in horizontal direction. Defaults to 0.0.
flip_ratio_bev_vertical (float, optional): The flipping probability
in vertical direction. Defaults to 0.0.
"""
def __init__(self,
sync_2d=True,
flip_ratio_bev_horizontal=0.0,
flip_ratio_bev_vertical=0.0,
**kwargs):
super(RandomFlip3D, self).__init__(
flip_ratio=flip_ratio_bev_horizontal, **kwargs)
self.sync_2d = sync_2d
self.flip_ratio_bev_vertical = flip_ratio_bev_vertical
if flip_ratio_bev_horizontal is not None:
assert isinstance(
flip_ratio_bev_horizontal,
(int, float)) and 0 <= flip_ratio_bev_horizontal <= 1
if flip_ratio_bev_vertical is not None:
assert isinstance(
flip_ratio_bev_vertical,
(int, float)) and 0 <= flip_ratio_bev_vertical <= 1
def random_flip_data_3d(self, input_dict, direction='horizontal'):
"""Flip 3D data randomly.
Args:
input_dict (dict): Result dict from loading pipeline.
direction (str, optional): Flip direction.
Default: 'horizontal'.
Returns:
dict: Flipped results, 'points', 'bbox3d_fields' keys are
updated in the result dict.
"""
assert direction in ['horizontal', 'vertical']
# for semantic segmentation task, only points will be flipped.
if 'bbox3d_fields' not in input_dict:
input_dict['points'].flip(direction)
return
if len(input_dict['bbox3d_fields']) == 0: # test mode
input_dict['bbox3d_fields'].append('empty_box3d')
input_dict['empty_box3d'] = input_dict['box_type_3d'](
np.array([], dtype=np.float32))
assert len(input_dict['bbox3d_fields']) == 1
for key in input_dict['bbox3d_fields']:
if 'points' in input_dict:
input_dict['points'] = input_dict[key].flip(
direction, points=input_dict['points'])
else:
input_dict[key].flip(direction)
if 'centers2d' in input_dict:
assert self.sync_2d is True and direction == 'horizontal', \
'Only support sync_2d=True and horizontal flip with images'
w = input_dict['ori_shape'][1]
input_dict['centers2d'][..., 0] = \
w - input_dict['centers2d'][..., 0]
# need to modify the horizontal position of camera center
# along u-axis in the image (flip like centers2d)
# ['cam2img'][0][2] = c_u
# see more details and examples at
# https://github.com/open-mmlab/mmdetection3d/pull/744
input_dict['cam2img'][0][2] = w - input_dict['cam2img'][0][2]
def __call__(self, input_dict):
"""Call function to flip points, values in the ``bbox3d_fields`` and
also flip 2D image and its annotations.
Args:
input_dict (dict): Result dict from loading pipeline.
Returns:
dict: Flipped results, 'flip', 'flip_direction',
'pcd_horizontal_flip' and 'pcd_vertical_flip' keys are added
into result dict.
"""
# flip 2D image and its annotations
super(RandomFlip3D, self).__call__(input_dict)
if self.sync_2d:
input_dict['pcd_horizontal_flip'] = input_dict['flip']
input_dict['pcd_vertical_flip'] = False
else:
if 'pcd_horizontal_flip' not in input_dict:
flip_horizontal = True if np.random.rand(
) < self.flip_ratio else False
input_dict['pcd_horizontal_flip'] = flip_horizontal
if 'pcd_vertical_flip' not in input_dict:
flip_vertical = True if np.random.rand(
) < self.flip_ratio_bev_vertical else False
input_dict['pcd_vertical_flip'] = flip_vertical
if 'transformation_3d_flow' not in input_dict:
input_dict['transformation_3d_flow'] = []
if input_dict['pcd_horizontal_flip']:
self.random_flip_data_3d(input_dict, 'horizontal')
input_dict['transformation_3d_flow'].extend(['HF'])
if input_dict['pcd_vertical_flip']:
self.random_flip_data_3d(input_dict, 'vertical')
input_dict['transformation_3d_flow'].extend(['VF'])
return input_dict
def __repr__(self):
"""str: Return a string that describes the module."""
repr_str = self.__class__.__name__
repr_str += f'(sync_2d={self.sync_2d},'
repr_str += f' flip_ratio_bev_vertical={self.flip_ratio_bev_vertical})'
return repr_str
@PIPELINES.register_module()
class MultiViewWrapper(object):
"""Wrap transformation from single-view into multi-view.
The wrapper processes the images from multi-view one by one. For each
image, it constructs a pseudo dict according to the keys specified by the
'process_fields' parameter. After the transformation is finished, desired
information can be collected by specifying the keys in the 'collected_keys'
parameter. Multi-view images share the same transformation parameters
but do not share the same magnitude when a random transformation is
conducted.
Args:
transforms (list[dict]): A list of dict specifying the transformations
for the monocular situation.
process_fields (dict): Desired keys that the transformations should
be conducted on. Default to dict(img_fields=['img']).
collected_keys (list[str]): Collect information in transformation
like rotate angles, crop roi, and flip state.
"""
def __init__(self,
transforms,
process_fields=dict(img_fields=['img']),
collected_keys=[]):
self.transform = Compose(transforms)
self.collected_keys = collected_keys
self.process_fields = process_fields
def __call__(self, input_dict):
for key in self.collected_keys:
input_dict[key] = []
for img_id in range(len(input_dict['img'])):
process_dict = self.process_fields.copy()
for field in self.process_fields:
for key in self.process_fields[field]:
process_dict[key] = input_dict[key][img_id]
process_dict = self.transform(process_dict)
for field in self.process_fields:
for key in self.process_fields[field]:
input_dict[key][img_id] = process_dict[key]
for key in self.collected_keys:
input_dict[key].append(process_dict[key])
return input_dict
@PIPELINES.register_module()
class RangeLimitedRandomCrop(RandomCrop):
"""Randomly crop image-view objects under a limitation of range.
Args:
relative_x_offset_range (tuple[float]): Relative range of random crop
in x direction. (x_min, x_max) in [0, 1.0]. Default to (0.0, 1.0).
relative_y_offset_range (tuple[float]): Relative range of random crop
in y direction. (y_min, y_max) in [0, 1.0]. Default to (0.0, 1.0).
"""
def __init__(self,
relative_x_offset_range=(0.0, 1.0),
relative_y_offset_range=(0.0, 1.0),
**kwargs):
super(RangeLimitedRandomCrop, self).__init__(**kwargs)
for range in [relative_x_offset_range, relative_y_offset_range]:
assert 0 <= range[0] <= range[1] <= 1
self.relative_x_offset_range = relative_x_offset_range
self.relative_y_offset_range = relative_y_offset_range
def _crop_data(self, results, crop_size, allow_negative_crop):
"""Function to randomly crop images.
Modified from RandomCrop in mmdet==2.25.0
Args:
results (dict): Result dict from loading pipeline.
crop_size (tuple): Expected absolute size after cropping, (h, w).
Returns:
dict: Randomly cropped results, 'img_shape' key in result dict is
updated according to crop size.
"""
assert crop_size[0] > 0 and crop_size[1] > 0
for key in results.get('img_fields', ['img']):
img = results[key]
margin_h = max(img.shape[0] - crop_size[0], 0)
margin_w = max(img.shape[1] - crop_size[1], 0)
offset_range_h = (margin_h * self.relative_y_offset_range[0],
margin_h * self.relative_y_offset_range[1] + 1)
offset_h = np.random.randint(*offset_range_h)
offset_range_w = (margin_w * self.relative_x_offset_range[0],
margin_w * self.relative_x_offset_range[1] + 1)
offset_w = np.random.randint(*offset_range_w)
crop_y1, crop_y2 = offset_h, offset_h + crop_size[0]
crop_x1, crop_x2 = offset_w, offset_w + crop_size[1]
# crop the image
img = img[crop_y1:crop_y2, crop_x1:crop_x2, ...]
img_shape = img.shape
results[key] = img
results['crop'] = (crop_x1, crop_y1, crop_x2, crop_y2)
results['img_shape'] = img_shape
# crop bboxes accordingly and clip to the image boundary
for key in results.get('bbox_fields', []):
# e.g. gt_bboxes and gt_bboxes_ignore
bbox_offset = np.array([offset_w, offset_h, offset_w, offset_h],
dtype=np.float32)
bboxes = results[key] - bbox_offset
if self.bbox_clip_border:
bboxes[:, 0::2] = np.clip(bboxes[:, 0::2], 0, img_shape[1])
bboxes[:, 1::2] = np.clip(bboxes[:, 1::2], 0, img_shape[0])
valid_inds = (bboxes[:, 2] > bboxes[:, 0]) & (
bboxes[:, 3] > bboxes[:, 1])
# If the crop does not contain any gt-bbox area and
# allow_negative_crop is False, skip this image.
if (key == 'gt_bboxes' and not valid_inds.any()
and not allow_negative_crop):
return None
results[key] = bboxes[valid_inds, :]
# label fields. e.g. gt_labels and gt_labels_ignore
label_key = self.bbox2label.get(key)
if label_key in results:
results[label_key] = results[label_key][valid_inds]
# mask fields, e.g. gt_masks and gt_masks_ignore
mask_key = self.bbox2mask.get(key)
if mask_key in results:
results[mask_key] = results[mask_key][
valid_inds.nonzero()[0]].crop(
np.asarray([crop_x1, crop_y1, crop_x2, crop_y2]))
if self.recompute_bbox:
results[key] = results[mask_key].get_bboxes()
# crop semantic seg
for key in results.get('seg_fields', []):
results[key] = results[key][crop_y1:crop_y2, crop_x1:crop_x2]
return results
@PIPELINES.register_module()
class RandomRotate(Rotate):
"""Randomly rotate images.
The ratation angle is selected uniformly within the interval specified by
the 'range' parameter.
Args:
range (tuple[float]): Define the range of random rotation.
(angle_min, angle_max) in angle.
"""
def __init__(self, range, **kwargs):
super(RandomRotate, self).__init__(**kwargs)
self.range = range
def __call__(self, results):
self.angle = np.random.uniform(self.range[0], self.range[1])
super(RandomRotate, self).__call__(results)
results['rotate'] = self.angle
return results
@PIPELINES.register_module()
class RandomJitterPoints(object):
"""Randomly jitter point coordinates.
Different from the global translation in ``GlobalRotScaleTrans``, here we
apply different noises to each point in a scene.
Args:
jitter_std (list[float]): The standard deviation of jittering noise.
This applies random noise to all points in a 3D scene, which is
sampled from a gaussian distribution whose standard deviation is
set by ``jitter_std``. Defaults to [0.01, 0.01, 0.01]
clip_range (list[float]): Clip the randomly generated jitter
noise into this range. If None is given, don't perform clipping.
Defaults to [-0.05, 0.05]
Note:
This transform should only be used in point cloud segmentation tasks
because we don't transform ground-truth bboxes accordingly.
For similar transform in detection task, please refer to `ObjectNoise`.
"""
def __init__(self,
jitter_std=[0.01, 0.01, 0.01],
clip_range=[-0.05, 0.05]):
seq_types = (list, tuple, np.ndarray)
if not isinstance(jitter_std, seq_types):
assert isinstance(jitter_std, (int, float)), \
f'unsupported jitter_std type {type(jitter_std)}'
jitter_std = [jitter_std, jitter_std, jitter_std]
self.jitter_std = jitter_std
if clip_range is not None:
if not isinstance(clip_range, seq_types):
assert isinstance(clip_range, (int, float)), \
f'unsupported clip_range type {type(clip_range)}'
clip_range = [-clip_range, clip_range]
self.clip_range = clip_range
def __call__(self, input_dict):
"""Call function to jitter all the points in the scene.
Args:
input_dict (dict): Result dict from loading pipeline.
Returns:
dict: Results after adding noise to each point,
'points' key is updated in the result dict.
"""
points = input_dict['points']
jitter_std = np.array(self.jitter_std, dtype=np.float32)
jitter_noise = \
np.random.randn(points.shape[0], 3) * jitter_std[None, :]
if self.clip_range is not None:
jitter_noise = np.clip(jitter_noise, self.clip_range[0],
self.clip_range[1])
points.translate(jitter_noise)
return input_dict
def __repr__(self):
"""str: Return a string that describes the module."""
repr_str = self.__class__.__name__
repr_str += f'(jitter_std={self.jitter_std},'
repr_str += f' clip_range={self.clip_range})'
return repr_str
@PIPELINES.register_module()
class ObjectSample(object):
"""Sample GT objects to the data.
Args:
db_sampler (dict): Config dict of the database sampler.
sample_2d (bool): Whether to also paste 2D image patch to the images
This should be true when applying multi-modality cut-and-paste.
Defaults to False.
use_ground_plane (bool): Whether to use gound plane to adjust the
3D labels.
"""
def __init__(self, db_sampler, sample_2d=False, use_ground_plane=False):
self.sampler_cfg = db_sampler
self.sample_2d = sample_2d
if 'type' not in db_sampler.keys():
db_sampler['type'] = 'DataBaseSampler'
self.db_sampler = build_from_cfg(db_sampler, OBJECTSAMPLERS)
self.use_ground_plane = use_ground_plane
@staticmethod
def remove_points_in_boxes(points, boxes):
"""Remove the points in the sampled bounding boxes.
Args:
points (:obj:`BasePoints`): Input point cloud array.
boxes (np.ndarray): Sampled ground truth boxes.
Returns:
np.ndarray: Points with those in the boxes removed.
"""
masks = box_np_ops.points_in_rbbox(points.coord.numpy(), boxes)
points = points[np.logical_not(masks.any(-1))]
return points
def __call__(self, input_dict):
"""Call function to sample ground truth objects to the data.
Args:
input_dict (dict): Result dict from loading pipeline.
Returns:
dict: Results after object sampling augmentation,
'points', 'gt_bboxes_3d', 'gt_labels_3d' keys are updated
in the result dict.
"""
gt_bboxes_3d = input_dict['gt_bboxes_3d']
gt_labels_3d = input_dict['gt_labels_3d']
if self.use_ground_plane and 'plane' in input_dict['ann_info']:
ground_plane = input_dict['ann_info']['plane']
input_dict['plane'] = ground_plane
else:
ground_plane = None
# change to float for blending operation
points = input_dict['points']
if self.sample_2d:
img = input_dict['img']
gt_bboxes_2d = input_dict['gt_bboxes']
# Assume for now 3D & 2D bboxes are the same
sampled_dict = self.db_sampler.sample_all(
gt_bboxes_3d.tensor.numpy(),
gt_labels_3d,
gt_bboxes_2d=gt_bboxes_2d,
img=img)
else:
sampled_dict = self.db_sampler.sample_all(
gt_bboxes_3d.tensor.numpy(),
gt_labels_3d,
img=None,
ground_plane=ground_plane)
if sampled_dict is not None:
sampled_gt_bboxes_3d = sampled_dict['gt_bboxes_3d']
sampled_points = sampled_dict['points']
sampled_gt_labels = sampled_dict['gt_labels_3d']
gt_labels_3d = np.concatenate([gt_labels_3d, sampled_gt_labels],
axis=0)
gt_bboxes_3d = gt_bboxes_3d.new_box(
np.concatenate(
[gt_bboxes_3d.tensor.numpy(), sampled_gt_bboxes_3d]))
points = self.remove_points_in_boxes(points, sampled_gt_bboxes_3d)
# check the points dimension
points = points.cat([sampled_points, points])
if self.sample_2d:
sampled_gt_bboxes_2d = sampled_dict['gt_bboxes_2d']
gt_bboxes_2d = np.concatenate(
[gt_bboxes_2d, sampled_gt_bboxes_2d]).astype(np.float32)
input_dict['gt_bboxes'] = gt_bboxes_2d
input_dict['img'] = sampled_dict['img']
input_dict['gt_bboxes_3d'] = gt_bboxes_3d
input_dict['gt_labels_3d'] = gt_labels_3d.astype(np.int64)
input_dict['points'] = points
return input_dict
def __repr__(self):
"""str: Return a string that describes the module."""
repr_str = self.__class__.__name__
repr_str += f' sample_2d={self.sample_2d},'
repr_str += f' data_root={self.sampler_cfg.data_root},'
repr_str += f' info_path={self.sampler_cfg.info_path},'
repr_str += f' rate={self.sampler_cfg.rate},'
repr_str += f' prepare={self.sampler_cfg.prepare},'
repr_str += f' classes={self.sampler_cfg.classes},'
repr_str += f' sample_groups={self.sampler_cfg.sample_groups}'
return repr_str
@PIPELINES.register_module()
class ObjectNoise(object):
"""Apply noise to each GT objects in the scene.
Args:
translation_std (list[float], optional): Standard deviation of the
distribution where translation noise are sampled from.
Defaults to [0.25, 0.25, 0.25].
global_rot_range (list[float], optional): Global rotation to the scene.
Defaults to [0.0, 0.0].
rot_range (list[float], optional): Object rotation range.
Defaults to [-0.15707963267, 0.15707963267].
num_try (int, optional): Number of times to try if the noise applied is
invalid. Defaults to 100.
"""
def __init__(self,
translation_std=[0.25, 0.25, 0.25],
global_rot_range=[0.0, 0.0],
rot_range=[-0.15707963267, 0.15707963267],
num_try=100):
self.translation_std = translation_std
self.global_rot_range = global_rot_range
self.rot_range = rot_range
self.num_try = num_try
def __call__(self, input_dict):
"""Call function to apply noise to each ground truth in the scene.
Args:
input_dict (dict): Result dict from loading pipeline.
Returns:
dict: Results after adding noise to each object,
'points', 'gt_bboxes_3d' keys are updated in the result dict.
"""
gt_bboxes_3d = input_dict['gt_bboxes_3d']
points = input_dict['points']
# TODO: this is inplace operation
numpy_box = gt_bboxes_3d.tensor.numpy()
numpy_points = points.tensor.numpy()
noise_per_object_v3_(
numpy_box,
numpy_points,
rotation_perturb=self.rot_range,
center_noise_std=self.translation_std,
global_random_rot_range=self.global_rot_range,
num_try=self.num_try)
input_dict['gt_bboxes_3d'] = gt_bboxes_3d.new_box(numpy_box)
input_dict['points'] = points.new_point(numpy_points)
return input_dict
def __repr__(self):
"""str: Return a string that describes the module."""
repr_str = self.__class__.__name__
repr_str += f'(num_try={self.num_try},'
repr_str += f' translation_std={self.translation_std},'
repr_str += f' global_rot_range={self.global_rot_range},'
repr_str += f' rot_range={self.rot_range})'
return repr_str
@PIPELINES.register_module()
class GlobalAlignment(object):
"""Apply global alignment to 3D scene points by rotation and translation.
Args:
rotation_axis (int): Rotation axis for points and bboxes rotation.
Note:
We do not record the applied rotation and translation as in
GlobalRotScaleTrans. Because usually, we do not need to reverse
the alignment step.
For example, ScanNet 3D detection task uses aligned ground-truth
bounding boxes for evaluation.
"""
def __init__(self, rotation_axis):
self.rotation_axis = rotation_axis
def _trans_points(self, input_dict, trans_factor):
"""Private function to translate points.
Args:
input_dict (dict): Result dict from loading pipeline.
trans_factor (np.ndarray): Translation vector to be applied.
Returns:
dict: Results after translation, 'points' is updated in the dict.
"""
input_dict['points'].translate(trans_factor)
def _rot_points(self, input_dict, rot_mat):
"""Private function to rotate bounding boxes and points.
Args:
input_dict (dict): Result dict from loading pipeline.
rot_mat (np.ndarray): Rotation matrix to be applied.
Returns:
dict: Results after rotation, 'points' is updated in the dict.
"""
# input should be rot_mat_T so I transpose it here
input_dict['points'].rotate(rot_mat.T)
def _check_rot_mat(self, rot_mat):
"""Check if rotation matrix is valid for self.rotation_axis.
Args:
rot_mat (np.ndarray): Rotation matrix to be applied.
"""
is_valid = np.allclose(np.linalg.det(rot_mat), 1.0)
valid_array = np.zeros(3)
valid_array[self.rotation_axis] = 1.0
is_valid &= (rot_mat[self.rotation_axis, :] == valid_array).all()
is_valid &= (rot_mat[:, self.rotation_axis] == valid_array).all()
assert is_valid, f'invalid rotation matrix {rot_mat}'
def __call__(self, input_dict):
"""Call function to shuffle points.
Args:
input_dict (dict): Result dict from loading pipeline.
Returns:
dict: Results after global alignment, 'points' and keys in
input_dict['bbox3d_fields'] are updated in the result dict.
"""
assert 'axis_align_matrix' in input_dict['ann_info'].keys(), \
'axis_align_matrix is not provided in GlobalAlignment'
axis_align_matrix = input_dict['ann_info']['axis_align_matrix']
assert axis_align_matrix.shape == (4, 4), \
f'invalid shape {axis_align_matrix.shape} for axis_align_matrix'
rot_mat = axis_align_matrix[:3, :3]
trans_vec = axis_align_matrix[:3, -1]
self._check_rot_mat(rot_mat)
self._rot_points(input_dict, rot_mat)
self._trans_points(input_dict, trans_vec)
return input_dict
def __repr__(self):
repr_str = self.__class__.__name__
repr_str += f'(rotation_axis={self.rotation_axis})'
return repr_str
@PIPELINES.register_module()
class GlobalRotScaleTrans(object):
"""Apply global rotation, scaling and translation to a 3D scene.
Args:
rot_range (list[float], optional): Range of rotation angle.
Defaults to [-0.78539816, 0.78539816] (close to [-pi/4, pi/4]).
scale_ratio_range (list[float], optional): Range of scale ratio.
Defaults to [0.95, 1.05].
translation_std (list[float], optional): The standard deviation of
translation noise applied to a scene, which
is sampled from a gaussian distribution whose standard deviation
is set by ``translation_std``. Defaults to [0, 0, 0]
shift_height (bool, optional): Whether to shift height.
(the fourth dimension of indoor points) when scaling.
Defaults to False.
"""
def __init__(self,
rot_range=[-0.78539816, 0.78539816],
scale_ratio_range=[0.95, 1.05],
translation_std=[0, 0, 0],
shift_height=False):
seq_types = (list, tuple, np.ndarray)
if not isinstance(rot_range, seq_types):
assert isinstance(rot_range, (int, float)), \
f'unsupported rot_range type {type(rot_range)}'
rot_range = [-rot_range, rot_range]
self.rot_range = rot_range
assert isinstance(scale_ratio_range, seq_types), \
f'unsupported scale_ratio_range type {type(scale_ratio_range)}'
self.scale_ratio_range = scale_ratio_range
if not isinstance(translation_std, seq_types):
assert isinstance(translation_std, (int, float)), \
f'unsupported translation_std type {type(translation_std)}'
translation_std = [
translation_std, translation_std, translation_std
]
assert all([std >= 0 for std in translation_std]), \
'translation_std should be positive'
self.translation_std = translation_std
self.shift_height = shift_height
def _trans_bbox_points(self, input_dict):
"""Private function to translate bounding boxes and points.
Args:
input_dict (dict): Result dict from loading pipeline.
Returns:
dict: Results after translation, 'points', 'pcd_trans'
and keys in input_dict['bbox3d_fields'] are updated
in the result dict.
"""
translation_std = np.array(self.translation_std, dtype=np.float32)
trans_factor = np.random.normal(scale=translation_std, size=3).T
input_dict['points'].translate(trans_factor)
input_dict['pcd_trans'] = trans_factor
for key in input_dict['bbox3d_fields']:
input_dict[key].translate(trans_factor)
def _rot_bbox_points(self, input_dict):
"""Private function to rotate bounding boxes and points.
Args:
input_dict (dict): Result dict from loading pipeline.
Returns:
dict: Results after rotation, 'points', 'pcd_rotation'
and keys in input_dict['bbox3d_fields'] are updated
in the result dict.
"""
rotation = self.rot_range
noise_rotation = np.random.uniform(rotation[0], rotation[1])
# if no bbox in input_dict, only rotate points
if len(input_dict['bbox3d_fields']) == 0:
rot_mat_T = input_dict['points'].rotate(noise_rotation)
input_dict['pcd_rotation'] = rot_mat_T
input_dict['pcd_rotation_angle'] = noise_rotation
return
# rotate points with bboxes
for key in input_dict['bbox3d_fields']:
if len(input_dict[key].tensor) != 0:
points, rot_mat_T = input_dict[key].rotate(
noise_rotation, input_dict['points'])
input_dict['points'] = points
input_dict['pcd_rotation'] = rot_mat_T
input_dict['pcd_rotation_angle'] = noise_rotation
def _scale_bbox_points(self, input_dict):
"""Private function to scale bounding boxes and points.
Args:
input_dict (dict): Result dict from loading pipeline.
Returns:
dict: Results after scaling, 'points'and keys in
input_dict['bbox3d_fields'] are updated in the result dict.
"""
scale = input_dict['pcd_scale_factor']
points = input_dict['points']
points.scale(scale)
if self.shift_height:
assert 'height' in points.attribute_dims.keys(), \
'setting shift_height=True but points have no height attribute'
points.tensor[:, points.attribute_dims['height']] *= scale
input_dict['points'] = points
for key in input_dict['bbox3d_fields']:
input_dict[key].scale(scale)
def _random_scale(self, input_dict):
"""Private function to randomly set the scale factor.
Args:
input_dict (dict): Result dict from loading pipeline.
Returns:
dict: Results after scaling, 'pcd_scale_factor' are updated
in the result dict.
"""
scale_factor = np.random.uniform(self.scale_ratio_range[0],
self.scale_ratio_range[1])
input_dict['pcd_scale_factor'] = scale_factor
def __call__(self, input_dict):
"""Private function to rotate, scale and translate bounding boxes and
points.
Args:
input_dict (dict): Result dict from loading pipeline.
Returns:
dict: Results after scaling, 'points', 'pcd_rotation',
'pcd_scale_factor', 'pcd_trans' and keys in
input_dict['bbox3d_fields'] are updated in the result dict.
"""
if 'transformation_3d_flow' not in input_dict:
input_dict['transformation_3d_flow'] = []
self._rot_bbox_points(input_dict)
if 'pcd_scale_factor' not in input_dict:
self._random_scale(input_dict)
self._scale_bbox_points(input_dict)
self._trans_bbox_points(input_dict)
input_dict['transformation_3d_flow'].extend(['R', 'S', 'T'])
return input_dict
def __repr__(self):
"""str: Return a string that describes the module."""
repr_str = self.__class__.__name__
repr_str += f'(rot_range={self.rot_range},'
repr_str += f' scale_ratio_range={self.scale_ratio_range},'
repr_str += f' translation_std={self.translation_std},'
repr_str += f' shift_height={self.shift_height})'
return repr_str
@PIPELINES.register_module()
class PointShuffle(object):
"""Shuffle input points."""
def __call__(self, input_dict):
"""Call function to shuffle points.
Args:
input_dict (dict): Result dict from loading pipeline.
Returns:
dict: Results after filtering, 'points', 'pts_instance_mask'
and 'pts_semantic_mask' keys are updated in the result dict.
"""
idx = input_dict['points'].shuffle()
idx = idx.numpy()
pts_instance_mask = input_dict.get('pts_instance_mask', None)
pts_semantic_mask = input_dict.get('pts_semantic_mask', None)
if pts_instance_mask is not None:
input_dict['pts_instance_mask'] = pts_instance_mask[idx]
if pts_semantic_mask is not None:
input_dict['pts_semantic_mask'] = pts_semantic_mask[idx]
return input_dict
def __repr__(self):
return self.__class__.__name__
@PIPELINES.register_module()
class ObjectRangeFilter(object):
"""Filter objects by the range.
Args:
point_cloud_range (list[float]): Point cloud range.
"""
def __init__(self, point_cloud_range):
self.pcd_range = np.array(point_cloud_range, dtype=np.float32)
def __call__(self, input_dict):
"""Call function to filter objects by the range.
Args:
input_dict (dict): Result dict from loading pipeline.
Returns:
dict: Results after filtering, 'gt_bboxes_3d', 'gt_labels_3d'
keys are updated in the result dict.
"""
# Check points instance type and initialise bev_range
if isinstance(input_dict['gt_bboxes_3d'],
(LiDARInstance3DBoxes, DepthInstance3DBoxes)):
bev_range = self.pcd_range[[0, 1, 3, 4]]
elif isinstance(input_dict['gt_bboxes_3d'], CameraInstance3DBoxes):
bev_range = self.pcd_range[[0, 2, 3, 5]]
gt_bboxes_3d = input_dict['gt_bboxes_3d']
gt_labels_3d = input_dict['gt_labels_3d']
mask = gt_bboxes_3d.in_range_bev(bev_range)
gt_bboxes_3d = gt_bboxes_3d[mask]
# mask is a torch tensor but gt_labels_3d is still numpy array
# using mask to index gt_labels_3d will cause bug when
# len(gt_labels_3d) == 1, where mask=1 will be interpreted
# as gt_labels_3d[1] and cause out of index error
gt_labels_3d = gt_labels_3d[mask.numpy().astype(np.bool)]
# limit rad to [-pi, pi]
gt_bboxes_3d.limit_yaw(offset=0.5, period=2 * np.pi)
input_dict['gt_bboxes_3d'] = gt_bboxes_3d
input_dict['gt_labels_3d'] = gt_labels_3d
return input_dict
def __repr__(self):
"""str: Return a string that describes the module."""
repr_str = self.__class__.__name__
repr_str += f'(point_cloud_range={self.pcd_range.tolist()})'
return repr_str
@PIPELINES.register_module()
class PointsRangeFilter(object):
"""Filter points by the range.
Args:
point_cloud_range (list[float]): Point cloud range.
"""
def __init__(self, point_cloud_range):
self.pcd_range = np.array(point_cloud_range, dtype=np.float32)
def __call__(self, input_dict):
"""Call function to filter points by the range.
Args:
input_dict (dict): Result dict from loading pipeline.
Returns:
dict: Results after filtering, 'points', 'pts_instance_mask'
and 'pts_semantic_mask' keys are updated in the result dict.
"""
points = input_dict['points']
points_mask = points.in_range_3d(self.pcd_range)
clean_points = points[points_mask]
input_dict['points'] = clean_points
points_mask = points_mask.numpy()
pts_instance_mask = input_dict.get('pts_instance_mask', None)
pts_semantic_mask = input_dict.get('pts_semantic_mask', None)
if pts_instance_mask is not None:
input_dict['pts_instance_mask'] = pts_instance_mask[points_mask]
if pts_semantic_mask is not None:
input_dict['pts_semantic_mask'] = pts_semantic_mask[points_mask]
return input_dict
def __repr__(self):
"""str: Return a string that describes the module."""
repr_str = self.__class__.__name__
repr_str += f'(point_cloud_range={self.pcd_range.tolist()})'
return repr_str
@PIPELINES.register_module()
class ObjectNameFilter(object):
"""Filter GT objects by their names.
Args:
classes (list[str]): List of class names to be kept for training.
"""
def __init__(self, classes):
self.classes = classes
self.labels = list(range(len(self.classes)))
def __call__(self, input_dict):
"""Call function to filter objects by their names.