-
Notifications
You must be signed in to change notification settings - Fork 1.6k
/
Copy pathpillar_scatter.py
102 lines (84 loc) · 3.65 KB
/
pillar_scatter.py
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
# Copyright (c) OpenMMLab. All rights reserved.
import torch
from mmcv.runner import auto_fp16
from torch import nn
from ..builder import MIDDLE_ENCODERS
@MIDDLE_ENCODERS.register_module()
class PointPillarsScatter(nn.Module):
"""Point Pillar's Scatter.
Converts learned features from dense tensor to sparse pseudo image.
Args:
in_channels (int): Channels of input features.
output_shape (list[int]): Required output shape of features.
"""
def __init__(self, in_channels, output_shape):
super().__init__()
self.output_shape = output_shape
self.ny = output_shape[0]
self.nx = output_shape[1]
self.in_channels = in_channels
self.fp16_enabled = False
@auto_fp16(apply_to=('voxel_features', ))
def forward(self, voxel_features, coors, batch_size=None):
"""Forward function to scatter features."""
# TODO: rewrite the function in a batch manner
# no need to deal with different batch cases
if batch_size is not None:
return self.forward_batch(voxel_features, coors, batch_size)
else:
return self.forward_single(voxel_features, coors)
def forward_single(self, voxel_features, coors):
"""Scatter features of single sample.
Args:
voxel_features (torch.Tensor): Voxel features in shape (N, C).
coors (torch.Tensor): Coordinates of each voxel.
The first column indicates the sample ID.
"""
# Create the canvas for this sample
canvas = torch.zeros(
self.in_channels,
self.nx * self.ny,
dtype=voxel_features.dtype,
device=voxel_features.device)
indices = coors[:, 2] * self.nx + coors[:, 3]
indices = indices.long()
voxels = voxel_features.t()
# Now scatter the blob back to the canvas.
canvas[:, indices] = voxels
# Undo the column stacking to final 4-dim tensor
canvas = canvas.view(1, self.in_channels, self.ny, self.nx)
return canvas
def forward_batch(self, voxel_features, coors, batch_size):
"""Scatter features of single sample.
Args:
voxel_features (torch.Tensor): Voxel features in shape (N, C).
coors (torch.Tensor): Coordinates of each voxel in shape (N, 4).
The first column indicates the sample ID.
batch_size (int): Number of samples in the current batch.
"""
# batch_canvas will be the final output.
batch_canvas = []
for batch_itt in range(batch_size):
# Create the canvas for this sample
canvas = torch.zeros(
self.in_channels,
self.nx * self.ny,
dtype=voxel_features.dtype,
device=voxel_features.device)
# Only include non-empty pillars
batch_mask = coors[:, 0] == batch_itt
this_coors = coors[batch_mask, :]
indices = this_coors[:, 2] * self.nx + this_coors[:, 3]
indices = indices.type(torch.long)
voxels = voxel_features[batch_mask, :]
voxels = voxels.t()
# Now scatter the blob back to the canvas.
canvas[:, indices] = voxels
# Append to a list for later stacking.
batch_canvas.append(canvas)
# Stack to 3-dim tensor (batch-size, in_channels, nrows*ncols)
batch_canvas = torch.stack(batch_canvas, 0)
# Undo the column stacking to final 4-dim tensor
batch_canvas = batch_canvas.view(batch_size, self.in_channels, self.ny,
self.nx)
return batch_canvas