-
Notifications
You must be signed in to change notification settings - Fork 1.6k
/
Copy pathbrowse_dataset.py
232 lines (206 loc) · 8.19 KB
/
browse_dataset.py
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
import argparse
import numpy as np
import warnings
from mmcv import Config, DictAction, mkdir_or_exist, track_iter_progress
from os import path as osp
from mmdet3d.core.bbox import (Box3DMode, Coord3DMode, DepthInstance3DBoxes,
LiDARInstance3DBoxes)
from mmdet3d.core.visualizer import (show_multi_modality_result, show_result,
show_seg_result)
from mmdet3d.datasets import build_dataset
def parse_args():
parser = argparse.ArgumentParser(description='Browse a dataset')
parser.add_argument('config', help='train config file path')
parser.add_argument(
'--skip-type',
type=str,
nargs='+',
default=['Normalize'],
help='skip some useless pipeline')
parser.add_argument(
'--output-dir',
default=None,
type=str,
help='If there is no display interface, you can save it')
parser.add_argument(
'--multi-modality',
action='store_true',
help='Whether to visualize multi-modality data. If True, we will show '
'both 3D point clouds with 3D bounding boxes and 2D images with '
'projected bounding boxes.')
parser.add_argument(
'--online',
action='store_true',
help='Whether to perform online visualization. Note that you often '
'need a monitor to do so.')
parser.add_argument(
'--cfg-options',
nargs='+',
action=DictAction,
help='override some settings in the used config, the key-value pair '
'in xxx=yyy format will be merged into config file. If the value to '
'be overwritten is a list, it should be like key="[a,b]" or key=a,b '
'It also allows nested list/tuple values, e.g. key="[(a,b),(c,d)]" '
'Note that the quotation marks are necessary and that no white space '
'is allowed.')
args = parser.parse_args()
return args
def build_data_cfg(config_path, skip_type, cfg_options):
"""Build data config for loading visualization data."""
cfg = Config.fromfile(config_path)
if cfg_options is not None:
cfg.merge_from_dict(cfg_options)
# import modules from string list.
if cfg.get('custom_imports', None):
from mmcv.utils import import_modules_from_strings
import_modules_from_strings(**cfg['custom_imports'])
# extract inner dataset of `RepeatDataset` as `cfg.data.train`
# so we don't need to worry about it later
if cfg.data.train['type'] == 'RepeatDataset':
cfg.data.train = cfg.data.train.dataset
train_data_cfg = cfg.data.train
# eval_pipeline purely consists of loading functions
# use eval_pipeline for data loading
train_data_cfg['pipeline'] = [
x for x in cfg.eval_pipeline if x['type'] not in skip_type
]
return cfg
def to_depth_mode(points, bboxes):
"""Convert points and bboxes to Depth Coord and Depth Box mode."""
if points is not None:
points = Coord3DMode.convert_point(points.copy(), Coord3DMode.LIDAR,
Coord3DMode.DEPTH)
if bboxes is not None:
bboxes = Box3DMode.convert(bboxes.clone(), Box3DMode.LIDAR,
Box3DMode.DEPTH)
return points, bboxes
def show_det_data(idx, dataset, out_dir, filename, show=False):
"""Visualize 3D point cloud and 3D bboxes."""
example = dataset.prepare_train_data(idx)
points = example['points']._data.numpy()
gt_bboxes = dataset.get_ann_info(idx)['gt_bboxes_3d'].tensor
if dataset.box_mode_3d != Box3DMode.DEPTH:
points, gt_bboxes = to_depth_mode(points, gt_bboxes)
show_result(
points,
gt_bboxes.clone(),
None,
out_dir,
filename,
show=show,
snapshot=True)
def show_seg_data(idx, dataset, out_dir, filename, show=False):
"""Visualize 3D point cloud and segmentation mask."""
example = dataset.prepare_train_data(idx)
points = example['points']._data.numpy()
gt_seg = example['pts_semantic_mask']._data.numpy()
show_seg_result(
points,
gt_seg.copy(),
None,
out_dir,
filename,
np.array(dataset.PALETTE),
dataset.ignore_index,
show=show,
snapshot=True)
def show_proj_bbox_img(idx, dataset, out_dir, filename, show=False):
"""Visualize 3D bboxes on 2D image by projection."""
example = dataset.prepare_train_data(idx)
gt_bboxes = dataset.get_ann_info(idx)['gt_bboxes_3d']
img_metas = example['img_metas']._data
img = example['img']._data.numpy()
# need to transpose channel to first dim
img = img.transpose(1, 2, 0)
# no 3D gt bboxes, just show img
if gt_bboxes.tensor.shape[0] == 0:
gt_bboxes = None
if isinstance(gt_bboxes, DepthInstance3DBoxes):
show_multi_modality_result(
img,
gt_bboxes,
None,
example['calib'],
out_dir,
filename,
depth_bbox=True,
img_metas=img_metas,
show=show)
elif isinstance(gt_bboxes, LiDARInstance3DBoxes):
show_multi_modality_result(
img,
gt_bboxes,
None,
img_metas['lidar2img'],
out_dir,
filename,
depth_bbox=False,
img_metas=img_metas,
show=show)
else:
# can't project, just show img
show_multi_modality_result(
img, None, None, None, out_dir, filename, show=show)
def is_multi_modality(dataset):
"""Judge whether a dataset loads multi-modality data (points+img)."""
if not hasattr(dataset, 'modality') or dataset.modality is None:
return False
if dataset.modality['use_camera']:
# even dataset with `use_camera=True` may not load img
# should check its loaded data
example = dataset.prepare_train_data(0)
if 'img' in example.keys():
return True
return False
def main():
args = parse_args()
if args.output_dir is not None:
mkdir_or_exist(args.output_dir)
cfg = build_data_cfg(args.config, args.skip_type, args.cfg_options)
try:
dataset = build_dataset(
cfg.data.train, default_args=dict(filter_empty_gt=False))
except TypeError: # seg dataset doesn't have `filter_empty_gt` key
dataset = build_dataset(cfg.data.train)
data_infos = dataset.data_infos
dataset_type = cfg.dataset_type
# configure visualization mode
vis_type = 'det' # single-modality detection
if dataset_type in ['ScanNetSegDataset', 'S3DISSegDataset']:
vis_type = 'seg' # segmentation
multi_modality = args.multi_modality
if multi_modality:
# check whether dataset really supports multi-modality input
if not is_multi_modality(dataset):
warnings.warn(
f'{dataset_type} with current config does not support multi-'
'modality data loading, only show point clouds here')
multi_modality = False
for idx, data_info in enumerate(track_iter_progress(data_infos)):
if dataset_type in ['KittiDataset', 'WaymoDataset']:
pts_path = data_info['point_cloud']['velodyne_path']
elif dataset_type in [
'ScanNetDataset', 'SUNRGBDDataset', 'ScanNetSegDataset',
'S3DISSegDataset'
]:
pts_path = data_info['pts_path']
elif dataset_type in ['NuScenesDataset', 'LyftDataset']:
pts_path = data_info['lidar_path']
else:
raise NotImplementedError(
f'unsupported dataset type {dataset_type}')
file_name = osp.splitext(osp.basename(pts_path))[0]
if vis_type == 'det':
# show 3D bboxes on 3D point clouds
show_det_data(
idx, dataset, args.output_dir, file_name, show=args.online)
if multi_modality:
# project 3D bboxes to 2D image
show_proj_bbox_img(
idx, dataset, args.output_dir, file_name, show=args.online)
elif vis_type == 'seg':
# show 3D segmentation mask on 3D point clouds
show_seg_data(
idx, dataset, args.output_dir, file_name, show=args.online)
if __name__ == '__main__':
main()