Skip to content

Latest commit

 

History

History
190 lines (143 loc) · 6.25 KB

data_pipeline.md

File metadata and controls

190 lines (143 loc) · 6.25 KB

教程 3: 自定义数据预处理流程

数据预处理流程的设计

遵循一般惯例,我们使用 DatasetDataLoader 来调用多个进程进行数据的加载。Dataset 将会返回与模型前向传播的参数所对应的数据项构成的字典。因为目标检测中的数据的尺寸可能无法保持一致(如点云中点的数量、真实标注框的尺寸等),我们在 MMCV 中引入一个 DataContainer 类型,来帮助收集和分发不同尺寸的数据。请参考此处获取更多细节。

数据预处理流程和数据集之间是互相分离的两个部分,通常数据集定义了如何处理标注信息,而数据预处理流程定义了准备数据项字典的所有步骤。数据集预处理流程包含一系列的操作,每个操作将一个字典作为输入,并输出应用于下一个转换的一个新的字典。

我们将在下图中展示一个最经典的数据集预处理流程,其中蓝色框表示预处理流程中的各项操作。随着预处理的进行,每一个操作都会添加新的键值(图中标记为绿色)到输出字典中,或者更新当前存在的键值(图中标记为橙色)。

预处理流程中的各项操作主要分为数据加载、预处理、格式化、测试时的数据增强。

接下来将展示一个用于 PointPillars 模型的数据集预处理流程的例子。

train_pipeline = [
    dict(
        type='LoadPointsFromFile',
        load_dim=5,
        use_dim=5,
        file_client_args=file_client_args),
    dict(
        type='LoadPointsFromMultiSweeps',
        sweeps_num=10,
        file_client_args=file_client_args),
    dict(type='LoadAnnotations3D', with_bbox_3d=True, with_label_3d=True),
    dict(
        type='GlobalRotScaleTrans',
        rot_range=[-0.3925, 0.3925],
        scale_ratio_range=[0.95, 1.05],
        translation_std=[0, 0, 0]),
    dict(type='RandomFlip3D', flip_ratio_bev_horizontal=0.5),
    dict(type='PointsRangeFilter', point_cloud_range=point_cloud_range),
    dict(type='ObjectRangeFilter', point_cloud_range=point_cloud_range),
    dict(type='ObjectNameFilter', classes=class_names),
    dict(type='PointShuffle'),
    dict(type='DefaultFormatBundle3D', class_names=class_names),
    dict(type='Collect3D', keys=['points', 'gt_bboxes_3d', 'gt_labels_3d'])
]
test_pipeline = [
    dict(
        type='LoadPointsFromFile',
        load_dim=5,
        use_dim=5,
        file_client_args=file_client_args),
    dict(
        type='LoadPointsFromMultiSweeps',
        sweeps_num=10,
        file_client_args=file_client_args),
    dict(
        type='MultiScaleFlipAug',
        img_scale=(1333, 800),
        pts_scale_ratio=1.0,
        flip=False,
        pcd_horizontal_flip=False,
        pcd_vertical_flip=False,
        transforms=[
            dict(
                type='GlobalRotScaleTrans',
                rot_range=[0, 0],
                scale_ratio_range=[1., 1.],
                translation_std=[0, 0, 0]),
            dict(type='RandomFlip3D'),
            dict(
                type='PointsRangeFilter', point_cloud_range=point_cloud_range),
            dict(
                type='DefaultFormatBundle3D',
                class_names=class_names,
                with_label=False),
            dict(type='Collect3D', keys=['points'])
        ])
]

对于每项操作,我们将列出相关的被添加/更新/移除的字典项。

数据加载

LoadPointsFromFile

  • 添加:points

LoadPointsFromMultiSweeps

  • 更新:points

LoadAnnotations3D

  • 添加:gt_bboxes_3d, gt_labels_3d, gt_bboxes, gt_labels, pts_instance_mask, pts_semantic_mask, bbox3d_fields, pts_mask_fields, pts_seg_fields

预处理

GlobalRotScaleTrans

  • 添加:pcd_trans, pcd_rotation, pcd_scale_factor
  • 更新:points, *bbox3d_fields

RandomFlip3D

  • 添加:flip, pcd_horizontal_flip, pcd_vertical_flip
  • 更新:points, *bbox3d_fields

PointsRangeFilter

  • 更新:points

ObjectRangeFilter

  • 更新:gt_bboxes_3d, gt_labels_3d

ObjectNameFilter

  • 更新:gt_bboxes_3d, gt_labels_3d

PointShuffle

  • 更新:points

PointsRangeFilter

  • 更新:points

格式化

DefaultFormatBundle3D

  • 更新:points, gt_bboxes_3d, gt_labels_3d, gt_bboxes, gt_labels

Collect3D

  • 添加:img_meta (由 meta_keys 指定的键值构成的 img_meta)
  • 移除:所有除 keys 指定的键值以外的其他键值

测试时的数据增强

MultiScaleFlipAug

  • 更新: scale, pcd_scale_factor, flip, flip_direction, pcd_horizontal_flip, pcd_vertical_flip (与这些指定的参数对应的增强后的数据列表)

扩展并使用自定义数据集预处理方法

  1. 在任意文件中写入新的数据集预处理方法,如 my_pipeline.py,该预处理方法的输入和输出均为字典

    from mmdet.datasets import PIPELINES
    
    @PIPELINES.register_module()
    class MyTransform:
    
        def __call__(self, results):
            results['dummy'] = True
            return results
  2. 导入新的预处理方法类

    from .my_pipeline import MyTransform
  3. 在配置文件中使用该数据集预处理方法

    train_pipeline = [
        dict(
            type='LoadPointsFromFile',
            load_dim=5,
            use_dim=5,
            file_client_args=file_client_args),
        dict(
            type='LoadPointsFromMultiSweeps',
            sweeps_num=10,
            file_client_args=file_client_args),
        dict(type='LoadAnnotations3D', with_bbox_3d=True, with_label_3d=True),
        dict(
            type='GlobalRotScaleTrans',
            rot_range=[-0.3925, 0.3925],
            scale_ratio_range=[0.95, 1.05],
            translation_std=[0, 0, 0]),
        dict(type='RandomFlip3D', flip_ratio_bev_horizontal=0.5),
        dict(type='PointsRangeFilter', point_cloud_range=point_cloud_range),
        dict(type='ObjectRangeFilter', point_cloud_range=point_cloud_range),
        dict(type='ObjectNameFilter', classes=class_names),
        dict(type='MyTransform'),
        dict(type='PointShuffle'),
        dict(type='DefaultFormatBundle3D', class_names=class_names),
        dict(type='Collect3D', keys=['points', 'gt_bboxes_3d', 'gt_labels_3d'])
    ]