-
Notifications
You must be signed in to change notification settings - Fork 9.5k
/
coco.py
649 lines (577 loc) · 27.7 KB
/
coco.py
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
266
267
268
269
270
271
272
273
274
275
276
277
278
279
280
281
282
283
284
285
286
287
288
289
290
291
292
293
294
295
296
297
298
299
300
301
302
303
304
305
306
307
308
309
310
311
312
313
314
315
316
317
318
319
320
321
322
323
324
325
326
327
328
329
330
331
332
333
334
335
336
337
338
339
340
341
342
343
344
345
346
347
348
349
350
351
352
353
354
355
356
357
358
359
360
361
362
363
364
365
366
367
368
369
370
371
372
373
374
375
376
377
378
379
380
381
382
383
384
385
386
387
388
389
390
391
392
393
394
395
396
397
398
399
400
401
402
403
404
405
406
407
408
409
410
411
412
413
414
415
416
417
418
419
420
421
422
423
424
425
426
427
428
429
430
431
432
433
434
435
436
437
438
439
440
441
442
443
444
445
446
447
448
449
450
451
452
453
454
455
456
457
458
459
460
461
462
463
464
465
466
467
468
469
470
471
472
473
474
475
476
477
478
479
480
481
482
483
484
485
486
487
488
489
490
491
492
493
494
495
496
497
498
499
500
501
502
503
504
505
506
507
508
509
510
511
512
513
514
515
516
517
518
519
520
521
522
523
524
525
526
527
528
529
530
531
532
533
534
535
536
537
538
539
540
541
542
543
544
545
546
547
548
549
550
551
552
553
554
555
556
557
558
559
560
561
562
563
564
565
566
567
568
569
570
571
572
573
574
575
576
577
578
579
580
581
582
583
584
585
586
587
588
589
590
591
592
593
594
595
596
597
598
599
600
601
602
603
604
605
606
607
608
609
610
611
612
613
614
615
616
617
618
619
620
621
622
623
624
625
626
627
628
629
630
631
632
633
634
635
636
637
638
639
640
641
642
643
644
645
646
647
648
649
# Copyright (c) OpenMMLab. All rights reserved.
import contextlib
import io
import itertools
import logging
import os.path as osp
import tempfile
import warnings
from collections import OrderedDict
import mmcv
import numpy as np
from mmcv.utils import print_log
from terminaltables import AsciiTable
from mmdet.core import eval_recalls
from .api_wrappers import COCO, COCOeval
from .builder import DATASETS
from .custom import CustomDataset
@DATASETS.register_module()
class CocoDataset(CustomDataset):
CLASSES = ('person', 'bicycle', 'car', 'motorcycle', 'airplane', 'bus',
'train', 'truck', 'boat', 'traffic light', 'fire hydrant',
'stop sign', 'parking meter', 'bench', 'bird', 'cat', 'dog',
'horse', 'sheep', 'cow', 'elephant', 'bear', 'zebra', 'giraffe',
'backpack', 'umbrella', 'handbag', 'tie', 'suitcase', 'frisbee',
'skis', 'snowboard', 'sports ball', 'kite', 'baseball bat',
'baseball glove', 'skateboard', 'surfboard', 'tennis racket',
'bottle', 'wine glass', 'cup', 'fork', 'knife', 'spoon', 'bowl',
'banana', 'apple', 'sandwich', 'orange', 'broccoli', 'carrot',
'hot dog', 'pizza', 'donut', 'cake', 'chair', 'couch',
'potted plant', 'bed', 'dining table', 'toilet', 'tv', 'laptop',
'mouse', 'remote', 'keyboard', 'cell phone', 'microwave',
'oven', 'toaster', 'sink', 'refrigerator', 'book', 'clock',
'vase', 'scissors', 'teddy bear', 'hair drier', 'toothbrush')
PALETTE = [(220, 20, 60), (119, 11, 32), (0, 0, 142), (0, 0, 230),
(106, 0, 228), (0, 60, 100), (0, 80, 100), (0, 0, 70),
(0, 0, 192), (250, 170, 30), (100, 170, 30), (220, 220, 0),
(175, 116, 175), (250, 0, 30), (165, 42, 42), (255, 77, 255),
(0, 226, 252), (182, 182, 255), (0, 82, 0), (120, 166, 157),
(110, 76, 0), (174, 57, 255), (199, 100, 0), (72, 0, 118),
(255, 179, 240), (0, 125, 92), (209, 0, 151), (188, 208, 182),
(0, 220, 176), (255, 99, 164), (92, 0, 73), (133, 129, 255),
(78, 180, 255), (0, 228, 0), (174, 255, 243), (45, 89, 255),
(134, 134, 103), (145, 148, 174), (255, 208, 186),
(197, 226, 255), (171, 134, 1), (109, 63, 54), (207, 138, 255),
(151, 0, 95), (9, 80, 61), (84, 105, 51), (74, 65, 105),
(166, 196, 102), (208, 195, 210), (255, 109, 65), (0, 143, 149),
(179, 0, 194), (209, 99, 106), (5, 121, 0), (227, 255, 205),
(147, 186, 208), (153, 69, 1), (3, 95, 161), (163, 255, 0),
(119, 0, 170), (0, 182, 199), (0, 165, 120), (183, 130, 88),
(95, 32, 0), (130, 114, 135), (110, 129, 133), (166, 74, 118),
(219, 142, 185), (79, 210, 114), (178, 90, 62), (65, 70, 15),
(127, 167, 115), (59, 105, 106), (142, 108, 45), (196, 172, 0),
(95, 54, 80), (128, 76, 255), (201, 57, 1), (246, 0, 122),
(191, 162, 208)]
def load_annotations(self, ann_file):
"""Load annotation from COCO style annotation file.
Args:
ann_file (str): Path of annotation file.
Returns:
list[dict]: Annotation info from COCO api.
"""
self.coco = COCO(ann_file)
# The order of returned `cat_ids` will not
# change with the order of the CLASSES
self.cat_ids = self.coco.get_cat_ids(cat_names=self.CLASSES)
self.cat2label = {cat_id: i for i, cat_id in enumerate(self.cat_ids)}
self.img_ids = self.coco.get_img_ids()
data_infos = []
total_ann_ids = []
for i in self.img_ids:
info = self.coco.load_imgs([i])[0]
info['filename'] = info['file_name']
data_infos.append(info)
ann_ids = self.coco.get_ann_ids(img_ids=[i])
total_ann_ids.extend(ann_ids)
assert len(set(total_ann_ids)) == len(
total_ann_ids), f"Annotation ids in '{ann_file}' are not unique!"
return data_infos
def get_ann_info(self, idx):
"""Get COCO annotation by index.
Args:
idx (int): Index of data.
Returns:
dict: Annotation info of specified index.
"""
img_id = self.data_infos[idx]['id']
ann_ids = self.coco.get_ann_ids(img_ids=[img_id])
ann_info = self.coco.load_anns(ann_ids)
return self._parse_ann_info(self.data_infos[idx], ann_info)
def get_cat_ids(self, idx):
"""Get COCO category ids by index.
Args:
idx (int): Index of data.
Returns:
list[int]: All categories in the image of specified index.
"""
img_id = self.data_infos[idx]['id']
ann_ids = self.coco.get_ann_ids(img_ids=[img_id])
ann_info = self.coco.load_anns(ann_ids)
return [ann['category_id'] for ann in ann_info]
def _filter_imgs(self, min_size=32):
"""Filter images too small or without ground truths."""
valid_inds = []
# obtain images that contain annotation
ids_with_ann = set(_['image_id'] for _ in self.coco.anns.values())
# obtain images that contain annotations of the required categories
ids_in_cat = set()
for i, class_id in enumerate(self.cat_ids):
ids_in_cat |= set(self.coco.cat_img_map[class_id])
# merge the image id sets of the two conditions and use the merged set
# to filter out images if self.filter_empty_gt=True
ids_in_cat &= ids_with_ann
valid_img_ids = []
for i, img_info in enumerate(self.data_infos):
img_id = self.img_ids[i]
if self.filter_empty_gt and img_id not in ids_in_cat:
continue
if min(img_info['width'], img_info['height']) >= min_size:
valid_inds.append(i)
valid_img_ids.append(img_id)
self.img_ids = valid_img_ids
return valid_inds
def _parse_ann_info(self, img_info, ann_info):
"""Parse bbox and mask annotation.
Args:
ann_info (list[dict]): Annotation info of an image.
with_mask (bool): Whether to parse mask annotations.
Returns:
dict: A dict containing the following keys: bboxes, bboxes_ignore,\
labels, masks, seg_map. "masks" are raw annotations and not \
decoded into binary masks.
"""
gt_bboxes = []
gt_labels = []
gt_bboxes_ignore = []
gt_masks_ann = []
for i, ann in enumerate(ann_info):
if ann.get('ignore', False):
continue
x1, y1, w, h = ann['bbox']
inter_w = max(0, min(x1 + w, img_info['width']) - max(x1, 0))
inter_h = max(0, min(y1 + h, img_info['height']) - max(y1, 0))
if inter_w * inter_h == 0:
continue
if ann['area'] <= 0 or w < 1 or h < 1:
continue
if ann['category_id'] not in self.cat_ids:
continue
bbox = [x1, y1, x1 + w, y1 + h]
if ann.get('iscrowd', False):
gt_bboxes_ignore.append(bbox)
else:
gt_bboxes.append(bbox)
gt_labels.append(self.cat2label[ann['category_id']])
gt_masks_ann.append(ann.get('segmentation', None))
if gt_bboxes:
gt_bboxes = np.array(gt_bboxes, dtype=np.float32)
gt_labels = np.array(gt_labels, dtype=np.int64)
else:
gt_bboxes = np.zeros((0, 4), dtype=np.float32)
gt_labels = np.array([], dtype=np.int64)
if gt_bboxes_ignore:
gt_bboxes_ignore = np.array(gt_bboxes_ignore, dtype=np.float32)
else:
gt_bboxes_ignore = np.zeros((0, 4), dtype=np.float32)
seg_map = img_info['filename'].rsplit('.', 1)[0] + self.seg_suffix
ann = dict(
bboxes=gt_bboxes,
labels=gt_labels,
bboxes_ignore=gt_bboxes_ignore,
masks=gt_masks_ann,
seg_map=seg_map)
return ann
def xyxy2xywh(self, bbox):
"""Convert ``xyxy`` style bounding boxes to ``xywh`` style for COCO
evaluation.
Args:
bbox (numpy.ndarray): The bounding boxes, shape (4, ), in
``xyxy`` order.
Returns:
list[float]: The converted bounding boxes, in ``xywh`` order.
"""
_bbox = bbox.tolist()
return [
_bbox[0],
_bbox[1],
_bbox[2] - _bbox[0],
_bbox[3] - _bbox[1],
]
def _proposal2json(self, results):
"""Convert proposal results to COCO json style."""
json_results = []
for idx in range(len(self)):
img_id = self.img_ids[idx]
bboxes = results[idx]
for i in range(bboxes.shape[0]):
data = dict()
data['image_id'] = img_id
data['bbox'] = self.xyxy2xywh(bboxes[i])
data['score'] = float(bboxes[i][4])
data['category_id'] = 1
json_results.append(data)
return json_results
def _det2json(self, results):
"""Convert detection results to COCO json style."""
json_results = []
for idx in range(len(self)):
img_id = self.img_ids[idx]
result = results[idx]
for label in range(len(result)):
bboxes = result[label]
for i in range(bboxes.shape[0]):
data = dict()
data['image_id'] = img_id
data['bbox'] = self.xyxy2xywh(bboxes[i])
data['score'] = float(bboxes[i][4])
data['category_id'] = self.cat_ids[label]
json_results.append(data)
return json_results
def _segm2json(self, results):
"""Convert instance segmentation results to COCO json style."""
bbox_json_results = []
segm_json_results = []
for idx in range(len(self)):
img_id = self.img_ids[idx]
det, seg = results[idx]
for label in range(len(det)):
# bbox results
bboxes = det[label]
for i in range(bboxes.shape[0]):
data = dict()
data['image_id'] = img_id
data['bbox'] = self.xyxy2xywh(bboxes[i])
data['score'] = float(bboxes[i][4])
data['category_id'] = self.cat_ids[label]
bbox_json_results.append(data)
# segm results
# some detectors use different scores for bbox and mask
if isinstance(seg, tuple):
segms = seg[0][label]
mask_score = seg[1][label]
else:
segms = seg[label]
mask_score = [bbox[4] for bbox in bboxes]
for i in range(bboxes.shape[0]):
data = dict()
data['image_id'] = img_id
data['bbox'] = self.xyxy2xywh(bboxes[i])
data['score'] = float(mask_score[i])
data['category_id'] = self.cat_ids[label]
if isinstance(segms[i]['counts'], bytes):
segms[i]['counts'] = segms[i]['counts'].decode()
data['segmentation'] = segms[i]
segm_json_results.append(data)
return bbox_json_results, segm_json_results
def results2json(self, results, outfile_prefix):
"""Dump the detection results to a COCO style json file.
There are 3 types of results: proposals, bbox predictions, mask
predictions, and they have different data types. This method will
automatically recognize the type, and dump them to json files.
Args:
results (list[list | tuple | ndarray]): Testing results of the
dataset.
outfile_prefix (str): The filename prefix of the json files. If the
prefix is "somepath/xxx", the json files will be named
"somepath/xxx.bbox.json", "somepath/xxx.segm.json",
"somepath/xxx.proposal.json".
Returns:
dict[str: str]: Possible keys are "bbox", "segm", "proposal", and \
values are corresponding filenames.
"""
result_files = dict()
if isinstance(results[0], list):
json_results = self._det2json(results)
result_files['bbox'] = f'{outfile_prefix}.bbox.json'
result_files['proposal'] = f'{outfile_prefix}.bbox.json'
mmcv.dump(json_results, result_files['bbox'])
elif isinstance(results[0], tuple):
json_results = self._segm2json(results)
result_files['bbox'] = f'{outfile_prefix}.bbox.json'
result_files['proposal'] = f'{outfile_prefix}.bbox.json'
result_files['segm'] = f'{outfile_prefix}.segm.json'
mmcv.dump(json_results[0], result_files['bbox'])
mmcv.dump(json_results[1], result_files['segm'])
elif isinstance(results[0], np.ndarray):
json_results = self._proposal2json(results)
result_files['proposal'] = f'{outfile_prefix}.proposal.json'
mmcv.dump(json_results, result_files['proposal'])
else:
raise TypeError('invalid type of results')
return result_files
def fast_eval_recall(self, results, proposal_nums, iou_thrs, logger=None):
gt_bboxes = []
for i in range(len(self.img_ids)):
ann_ids = self.coco.get_ann_ids(img_ids=self.img_ids[i])
ann_info = self.coco.load_anns(ann_ids)
if len(ann_info) == 0:
gt_bboxes.append(np.zeros((0, 4)))
continue
bboxes = []
for ann in ann_info:
if ann.get('ignore', False) or ann['iscrowd']:
continue
x1, y1, w, h = ann['bbox']
bboxes.append([x1, y1, x1 + w, y1 + h])
bboxes = np.array(bboxes, dtype=np.float32)
if bboxes.shape[0] == 0:
bboxes = np.zeros((0, 4))
gt_bboxes.append(bboxes)
recalls = eval_recalls(
gt_bboxes, results, proposal_nums, iou_thrs, logger=logger)
ar = recalls.mean(axis=1)
return ar
def format_results(self, results, jsonfile_prefix=None, **kwargs):
"""Format the results to json (standard format for COCO evaluation).
Args:
results (list[tuple | numpy.ndarray]): Testing results of the
dataset.
jsonfile_prefix (str | None): The prefix of json files. It includes
the file path and the prefix of filename, e.g., "a/b/prefix".
If not specified, a temp file will be created. Default: None.
Returns:
tuple: (result_files, tmp_dir), result_files is a dict containing \
the json filepaths, tmp_dir is the temporal directory created \
for saving json files when jsonfile_prefix is not specified.
"""
assert isinstance(results, list), 'results must be a list'
assert len(results) == len(self), (
'The length of results is not equal to the dataset len: {} != {}'.
format(len(results), len(self)))
if jsonfile_prefix is None:
tmp_dir = tempfile.TemporaryDirectory()
jsonfile_prefix = osp.join(tmp_dir.name, 'results')
else:
tmp_dir = None
result_files = self.results2json(results, jsonfile_prefix)
return result_files, tmp_dir
def evaluate_det_segm(self,
results,
result_files,
coco_gt,
metrics,
logger=None,
classwise=False,
proposal_nums=(100, 300, 1000),
iou_thrs=None,
metric_items=None):
"""Instance segmentation and object detection evaluation in COCO
protocol.
Args:
results (list[list | tuple | dict]): Testing results of the
dataset.
result_files (dict[str, str]): a dict contains json file path.
coco_gt (COCO): COCO API object with ground truth annotation.
metric (str | list[str]): Metrics to be evaluated. Options are
'bbox', 'segm', 'proposal', 'proposal_fast'.
logger (logging.Logger | str | None): Logger used for printing
related information during evaluation. Default: None.
classwise (bool): Whether to evaluating the AP for each class.
proposal_nums (Sequence[int]): Proposal number used for evaluating
recalls, such as recall@100, recall@1000.
Default: (100, 300, 1000).
iou_thrs (Sequence[float], optional): IoU threshold used for
evaluating recalls/mAPs. If set to a list, the average of all
IoUs will also be computed. If not specified, [0.50, 0.55,
0.60, 0.65, 0.70, 0.75, 0.80, 0.85, 0.90, 0.95] will be used.
Default: None.
metric_items (list[str] | str, optional): Metric items that will
be returned. If not specified, ``['AR@100', 'AR@300',
'AR@1000', 'AR_s@1000', 'AR_m@1000', 'AR_l@1000' ]`` will be
used when ``metric=='proposal'``, ``['mAP', 'mAP_50', 'mAP_75',
'mAP_s', 'mAP_m', 'mAP_l']`` will be used when
``metric=='bbox' or metric=='segm'``.
Returns:
dict[str, float]: COCO style evaluation metric.
"""
if iou_thrs is None:
iou_thrs = np.linspace(
.5, 0.95, int(np.round((0.95 - .5) / .05)) + 1, endpoint=True)
if metric_items is not None:
if not isinstance(metric_items, list):
metric_items = [metric_items]
eval_results = OrderedDict()
for metric in metrics:
msg = f'Evaluating {metric}...'
if logger is None:
msg = '\n' + msg
print_log(msg, logger=logger)
if metric == 'proposal_fast':
if isinstance(results[0], tuple):
raise KeyError('proposal_fast is not supported for '
'instance segmentation result.')
ar = self.fast_eval_recall(
results, proposal_nums, iou_thrs, logger='silent')
log_msg = []
for i, num in enumerate(proposal_nums):
eval_results[f'AR@{num}'] = ar[i]
log_msg.append(f'\nAR@{num}\t{ar[i]:.4f}')
log_msg = ''.join(log_msg)
print_log(log_msg, logger=logger)
continue
iou_type = 'bbox' if metric == 'proposal' else metric
if metric not in result_files:
raise KeyError(f'{metric} is not in results')
try:
predictions = mmcv.load(result_files[metric])
if iou_type == 'segm':
# Refer to https://github.com/cocodataset/cocoapi/blob/master/PythonAPI/pycocotools/coco.py#L331 # noqa
# When evaluating mask AP, if the results contain bbox,
# cocoapi will use the box area instead of the mask area
# for calculating the instance area. Though the overall AP
# is not affected, this leads to different
# small/medium/large mask AP results.
for x in predictions:
x.pop('bbox')
warnings.simplefilter('once')
warnings.warn(
'The key "bbox" is deleted for more accurate mask AP '
'of small/medium/large instances since v2.12.0. This '
'does not change the overall mAP calculation.',
UserWarning)
coco_det = coco_gt.loadRes(predictions)
except IndexError:
print_log(
'The testing results of the whole dataset is empty.',
logger=logger,
level=logging.ERROR)
break
cocoEval = COCOeval(coco_gt, coco_det, iou_type)
cocoEval.params.catIds = self.cat_ids
cocoEval.params.imgIds = self.img_ids
cocoEval.params.maxDets = list(proposal_nums)
cocoEval.params.iouThrs = iou_thrs
# mapping of cocoEval.stats
coco_metric_names = {
'mAP': 0,
'mAP_50': 1,
'mAP_75': 2,
'mAP_s': 3,
'mAP_m': 4,
'mAP_l': 5,
'AR@100': 6,
'AR@300': 7,
'AR@1000': 8,
'AR_s@1000': 9,
'AR_m@1000': 10,
'AR_l@1000': 11
}
if metric_items is not None:
for metric_item in metric_items:
if metric_item not in coco_metric_names:
raise KeyError(
f'metric item {metric_item} is not supported')
if metric == 'proposal':
cocoEval.params.useCats = 0
cocoEval.evaluate()
cocoEval.accumulate()
# Save coco summarize print information to logger
redirect_string = io.StringIO()
with contextlib.redirect_stdout(redirect_string):
cocoEval.summarize()
print_log('\n' + redirect_string.getvalue(), logger=logger)
if metric_items is None:
metric_items = [
'AR@100', 'AR@300', 'AR@1000', 'AR_s@1000',
'AR_m@1000', 'AR_l@1000'
]
for item in metric_items:
val = float(
f'{cocoEval.stats[coco_metric_names[item]]:.4f}')
eval_results[item] = val
else:
cocoEval.evaluate()
cocoEval.accumulate()
# Save coco summarize print information to logger
redirect_string = io.StringIO()
with contextlib.redirect_stdout(redirect_string):
cocoEval.summarize()
print_log('\n' + redirect_string.getvalue(), logger=logger)
if classwise: # Compute per-category AP
# Compute per-category AP
# from https://github.com/facebookresearch/detectron2/
precisions = cocoEval.eval['precision']
# precision: (iou, recall, cls, area range, max dets)
assert len(self.cat_ids) == precisions.shape[2]
results_per_category = []
for idx, catId in enumerate(self.cat_ids):
# area range index 0: all area ranges
# max dets index -1: typically 100 per image
nm = self.coco.loadCats(catId)[0]
precision = precisions[:, :, idx, 0, -1]
precision = precision[precision > -1]
if precision.size:
ap = np.mean(precision)
else:
ap = float('nan')
results_per_category.append(
(f'{nm["name"]}', f'{float(ap):0.3f}'))
num_columns = min(6, len(results_per_category) * 2)
results_flatten = list(
itertools.chain(*results_per_category))
headers = ['category', 'AP'] * (num_columns // 2)
results_2d = itertools.zip_longest(*[
results_flatten[i::num_columns]
for i in range(num_columns)
])
table_data = [headers]
table_data += [result for result in results_2d]
table = AsciiTable(table_data)
print_log('\n' + table.table, logger=logger)
if metric_items is None:
metric_items = [
'mAP', 'mAP_50', 'mAP_75', 'mAP_s', 'mAP_m', 'mAP_l'
]
for metric_item in metric_items:
key = f'{metric}_{metric_item}'
val = float(
f'{cocoEval.stats[coco_metric_names[metric_item]]:.4f}'
)
eval_results[key] = val
ap = cocoEval.stats[:6]
eval_results[f'{metric}_mAP_copypaste'] = (
f'{ap[0]:.4f} {ap[1]:.4f} {ap[2]:.4f} {ap[3]:.4f} '
f'{ap[4]:.4f} {ap[5]:.4f}')
return eval_results
def evaluate(self,
results,
metric='bbox',
logger=None,
jsonfile_prefix=None,
classwise=False,
proposal_nums=(100, 300, 1000),
iou_thrs=None,
metric_items=None):
"""Evaluation in COCO protocol.
Args:
results (list[list | tuple]): Testing results of the dataset.
metric (str | list[str]): Metrics to be evaluated. Options are
'bbox', 'segm', 'proposal', 'proposal_fast'.
logger (logging.Logger | str | None): Logger used for printing
related information during evaluation. Default: None.
jsonfile_prefix (str | None): The prefix of json files. It includes
the file path and the prefix of filename, e.g., "a/b/prefix".
If not specified, a temp file will be created. Default: None.
classwise (bool): Whether to evaluating the AP for each class.
proposal_nums (Sequence[int]): Proposal number used for evaluating
recalls, such as recall@100, recall@1000.
Default: (100, 300, 1000).
iou_thrs (Sequence[float], optional): IoU threshold used for
evaluating recalls/mAPs. If set to a list, the average of all
IoUs will also be computed. If not specified, [0.50, 0.55,
0.60, 0.65, 0.70, 0.75, 0.80, 0.85, 0.90, 0.95] will be used.
Default: None.
metric_items (list[str] | str, optional): Metric items that will
be returned. If not specified, ``['AR@100', 'AR@300',
'AR@1000', 'AR_s@1000', 'AR_m@1000', 'AR_l@1000' ]`` will be
used when ``metric=='proposal'``, ``['mAP', 'mAP_50', 'mAP_75',
'mAP_s', 'mAP_m', 'mAP_l']`` will be used when
``metric=='bbox' or metric=='segm'``.
Returns:
dict[str, float]: COCO style evaluation metric.
"""
metrics = metric if isinstance(metric, list) else [metric]
allowed_metrics = ['bbox', 'segm', 'proposal', 'proposal_fast']
for metric in metrics:
if metric not in allowed_metrics:
raise KeyError(f'metric {metric} is not supported')
coco_gt = self.coco
self.cat_ids = coco_gt.get_cat_ids(cat_names=self.CLASSES)
result_files, tmp_dir = self.format_results(results, jsonfile_prefix)
eval_results = self.evaluate_det_segm(results, result_files, coco_gt,
metrics, logger, classwise,
proposal_nums, iou_thrs,
metric_items)
if tmp_dir is not None:
tmp_dir.cleanup()
return eval_results