DeepFashion: Powering Robust Clothes Recognition and Retrieval With Rich Annotations
Recent advances in clothes recognition have been driven by the construction of clothes datasets. Existing datasets are limited in the amount of annotations and are difficult to cope with the various challenges in real-world applications. In this work, we introduce DeepFashion, a large-scale clothes dataset with comprehensive annotations. It contains over 800,000 images, which are richly annotated with massive attributes, clothing landmarks, and correspondence of images taken under different scenarios including store, street snapshot, and consumer. Such rich annotations enable the development of powerful algorithms in clothes recognition and facilitating future researches. To demonstrate the advantages of DeepFashion, we propose a new deep model, namely FashionNet, which learns clothing features by jointly predicting clothing attributes and landmarks. The estimated landmarks are then employed to pool or gate the learned features. It is optimized in an iterative manner. Extensive experiments demonstrate the effectiveness of FashionNet and the usefulness of DeepFashion.
MMFashion develops "fashion parsing and segmentation" module based on the dataset DeepFashion-Inshop. Its annotation follows COCO style. To use it, you need to first download the data. Note that we only use "img_highres" in this task. The file tree should be like this:
mmdetection
├── mmdet
├── tools
├── configs
├── data
│ ├── DeepFashion
│ │ ├── In-shop
│ │ ├── Anno
│ │ │ ├── segmentation
│ │ │ | ├── DeepFashion_segmentation_train.json
│ │ │ | ├── DeepFashion_segmentation_query.json
│ │ │ | ├── DeepFashion_segmentation_gallery.json
│ │ │ ├── list_bbox_inshop.txt
│ │ │ ├── list_description_inshop.json
│ │ │ ├── list_item_inshop.txt
│ │ │ └── list_landmarks_inshop.txt
│ │ ├── Eval
│ │ │ └── list_eval_partition.txt
│ │ ├── Img
│ │ │ ├── img
│ │ │ │ ├──XXX.jpg
│ │ │ ├── img_highres
│ │ │ └── ├──XXX.jpg
After that you can train the Mask RCNN r50 on DeepFashion-In-shop dataset by launching training with the mask_rcnn_r50_fpn_1x.py
config
or creating your own config file.
Backbone | Model type | Dataset | bbox detection Average Precision | segmentation Average Precision | Config | Download (Google) |
---|---|---|---|---|---|---|
ResNet50 | Mask RCNN | DeepFashion-In-shop | 0.599 | 0.584 | config | model | log |
@inproceedings{liuLQWTcvpr16DeepFashion,
author = {Liu, Ziwei and Luo, Ping and Qiu, Shi and Wang, Xiaogang and Tang, Xiaoou},
title = {DeepFashion: Powering Robust Clothes Recognition and Retrieval with Rich Annotations},
booktitle = {Proceedings of IEEE Conference on Computer Vision and Pattern Recognition (CVPR)},
month = {June},
year = {2016}
}