-
Notifications
You must be signed in to change notification settings - Fork 9.5k
/
Copy pathrtmdet_head.py
692 lines (611 loc) · 28.9 KB
/
rtmdet_head.py
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
266
267
268
269
270
271
272
273
274
275
276
277
278
279
280
281
282
283
284
285
286
287
288
289
290
291
292
293
294
295
296
297
298
299
300
301
302
303
304
305
306
307
308
309
310
311
312
313
314
315
316
317
318
319
320
321
322
323
324
325
326
327
328
329
330
331
332
333
334
335
336
337
338
339
340
341
342
343
344
345
346
347
348
349
350
351
352
353
354
355
356
357
358
359
360
361
362
363
364
365
366
367
368
369
370
371
372
373
374
375
376
377
378
379
380
381
382
383
384
385
386
387
388
389
390
391
392
393
394
395
396
397
398
399
400
401
402
403
404
405
406
407
408
409
410
411
412
413
414
415
416
417
418
419
420
421
422
423
424
425
426
427
428
429
430
431
432
433
434
435
436
437
438
439
440
441
442
443
444
445
446
447
448
449
450
451
452
453
454
455
456
457
458
459
460
461
462
463
464
465
466
467
468
469
470
471
472
473
474
475
476
477
478
479
480
481
482
483
484
485
486
487
488
489
490
491
492
493
494
495
496
497
498
499
500
501
502
503
504
505
506
507
508
509
510
511
512
513
514
515
516
517
518
519
520
521
522
523
524
525
526
527
528
529
530
531
532
533
534
535
536
537
538
539
540
541
542
543
544
545
546
547
548
549
550
551
552
553
554
555
556
557
558
559
560
561
562
563
564
565
566
567
568
569
570
571
572
573
574
575
576
577
578
579
580
581
582
583
584
585
586
587
588
589
590
591
592
593
594
595
596
597
598
599
600
601
602
603
604
605
606
607
608
609
610
611
612
613
614
615
616
617
618
619
620
621
622
623
624
625
626
627
628
629
630
631
632
633
634
635
636
637
638
639
640
641
642
643
644
645
646
647
648
649
650
651
652
653
654
655
656
657
658
659
660
661
662
663
664
665
666
667
668
669
670
671
672
673
674
675
676
677
678
679
680
681
682
683
684
685
686
687
688
689
690
691
692
# Copyright (c) OpenMMLab. All rights reserved.
from typing import List, Optional, Tuple, Union
import torch
import torch.nn as nn
from mmcv.cnn import ConvModule, DepthwiseSeparableConvModule, Scale, is_norm
from mmengine.model import bias_init_with_prob, constant_init, normal_init
from mmengine.structures import InstanceData
from torch import Tensor
from mmdet.registry import MODELS, TASK_UTILS
from mmdet.structures.bbox import distance2bbox
from mmdet.utils import ConfigType, InstanceList, OptInstanceList, reduce_mean
from ..layers.transformer import inverse_sigmoid
from ..task_modules import anchor_inside_flags
from ..utils import (images_to_levels, multi_apply, sigmoid_geometric_mean,
unmap)
from .atss_head import ATSSHead
@MODELS.register_module()
class RTMDetHead(ATSSHead):
"""Detection Head of RTMDet.
Args:
num_classes (int): Number of categories excluding the background
category.
in_channels (int): Number of channels in the input feature map.
with_objectness (bool): Whether to add an objectness branch.
Defaults to True.
act_cfg (:obj:`ConfigDict` or dict): Config dict for activation layer.
Default: dict(type='ReLU')
"""
def __init__(self,
num_classes: int,
in_channels: int,
with_objectness: bool = True,
act_cfg: ConfigType = dict(type='ReLU'),
**kwargs) -> None:
self.act_cfg = act_cfg
self.with_objectness = with_objectness
super().__init__(num_classes, in_channels, **kwargs)
if self.train_cfg:
self.assigner = TASK_UTILS.build(self.train_cfg['assigner'])
def _init_layers(self):
"""Initialize layers of the head."""
self.cls_convs = nn.ModuleList()
self.reg_convs = nn.ModuleList()
for i in range(self.stacked_convs):
chn = self.in_channels if i == 0 else self.feat_channels
self.cls_convs.append(
ConvModule(
chn,
self.feat_channels,
3,
stride=1,
padding=1,
conv_cfg=self.conv_cfg,
norm_cfg=self.norm_cfg,
act_cfg=self.act_cfg))
self.reg_convs.append(
ConvModule(
chn,
self.feat_channels,
3,
stride=1,
padding=1,
conv_cfg=self.conv_cfg,
norm_cfg=self.norm_cfg,
act_cfg=self.act_cfg))
pred_pad_size = self.pred_kernel_size // 2
self.rtm_cls = nn.Conv2d(
self.feat_channels,
self.num_base_priors * self.cls_out_channels,
self.pred_kernel_size,
padding=pred_pad_size)
self.rtm_reg = nn.Conv2d(
self.feat_channels,
self.num_base_priors * 4,
self.pred_kernel_size,
padding=pred_pad_size)
if self.with_objectness:
self.rtm_obj = nn.Conv2d(
self.feat_channels,
1,
self.pred_kernel_size,
padding=pred_pad_size)
self.scales = nn.ModuleList(
[Scale(1.0) for _ in self.prior_generator.strides])
def init_weights(self) -> None:
"""Initialize weights of the head."""
for m in self.modules():
if isinstance(m, nn.Conv2d):
normal_init(m, mean=0, std=0.01)
if is_norm(m):
constant_init(m, 1)
bias_cls = bias_init_with_prob(0.01)
normal_init(self.rtm_cls, std=0.01, bias=bias_cls)
normal_init(self.rtm_reg, std=0.01)
if self.with_objectness:
normal_init(self.rtm_obj, std=0.01, bias=bias_cls)
def forward(self, feats: Tuple[Tensor, ...]) -> tuple:
"""Forward features from the upstream network.
Args:
feats (tuple[Tensor]): Features from the upstream network, each is
a 4D-tensor.
Returns:
tuple: Usually a tuple of classification scores and bbox prediction
- cls_scores (list[Tensor]): Classification scores for all scale
levels, each is a 4D-tensor, the channels number is
num_base_priors * num_classes.
- bbox_preds (list[Tensor]): Box energies / deltas for all scale
levels, each is a 4D-tensor, the channels number is
num_base_priors * 4.
"""
cls_scores = []
bbox_preds = []
for idx, (x, scale, stride) in enumerate(
zip(feats, self.scales, self.prior_generator.strides)):
cls_feat = x
reg_feat = x
for cls_layer in self.cls_convs:
cls_feat = cls_layer(cls_feat)
cls_score = self.rtm_cls(cls_feat)
for reg_layer in self.reg_convs:
reg_feat = reg_layer(reg_feat)
if self.with_objectness:
objectness = self.rtm_obj(reg_feat)
cls_score = inverse_sigmoid(
sigmoid_geometric_mean(cls_score, objectness))
reg_dist = scale(self.rtm_reg(reg_feat).exp()).float() * stride[0]
cls_scores.append(cls_score)
bbox_preds.append(reg_dist)
return tuple(cls_scores), tuple(bbox_preds)
def loss_by_feat_single(self, cls_score: Tensor, bbox_pred: Tensor,
labels: Tensor, label_weights: Tensor,
bbox_targets: Tensor, assign_metrics: Tensor,
stride: List[int]):
"""Compute loss of a single scale level.
Args:
cls_score (Tensor): Box scores for each scale level
Has shape (N, num_anchors * num_classes, H, W).
bbox_pred (Tensor): Decoded bboxes for each scale
level with shape (N, num_anchors * 4, H, W).
labels (Tensor): Labels of each anchors with shape
(N, num_total_anchors).
label_weights (Tensor): Label weights of each anchor with shape
(N, num_total_anchors).
bbox_targets (Tensor): BBox regression targets of each anchor with
shape (N, num_total_anchors, 4).
assign_metrics (Tensor): Assign metrics with shape
(N, num_total_anchors).
stride (List[int]): Downsample stride of the feature map.
Returns:
dict[str, Tensor]: A dictionary of loss components.
"""
assert stride[0] == stride[1], 'h stride is not equal to w stride!'
cls_score = cls_score.permute(0, 2, 3, 1).reshape(
-1, self.cls_out_channels).contiguous()
bbox_pred = bbox_pred.reshape(-1, 4)
bbox_targets = bbox_targets.reshape(-1, 4)
labels = labels.reshape(-1)
assign_metrics = assign_metrics.reshape(-1)
label_weights = label_weights.reshape(-1)
targets = (labels, assign_metrics)
loss_cls = self.loss_cls(
cls_score, targets, label_weights, avg_factor=1.0)
# FG cat_id: [0, num_classes -1], BG cat_id: num_classes
bg_class_ind = self.num_classes
pos_inds = ((labels >= 0)
& (labels < bg_class_ind)).nonzero().squeeze(1)
if len(pos_inds) > 0:
pos_bbox_targets = bbox_targets[pos_inds]
pos_bbox_pred = bbox_pred[pos_inds]
pos_decode_bbox_pred = pos_bbox_pred
pos_decode_bbox_targets = pos_bbox_targets
# regression loss
pos_bbox_weight = assign_metrics[pos_inds]
loss_bbox = self.loss_bbox(
pos_decode_bbox_pred,
pos_decode_bbox_targets,
weight=pos_bbox_weight,
avg_factor=1.0)
else:
loss_bbox = bbox_pred.sum() * 0
pos_bbox_weight = bbox_targets.new_tensor(0.)
return loss_cls, loss_bbox, assign_metrics.sum(), pos_bbox_weight.sum()
def loss_by_feat(self,
cls_scores: List[Tensor],
bbox_preds: List[Tensor],
batch_gt_instances: InstanceList,
batch_img_metas: List[dict],
batch_gt_instances_ignore: OptInstanceList = None):
"""Compute losses of the head.
Args:
cls_scores (list[Tensor]): Box scores for each scale level
Has shape (N, num_anchors * num_classes, H, W)
bbox_preds (list[Tensor]): Decoded box for each scale
level with shape (N, num_anchors * 4, H, W) in
[tl_x, tl_y, br_x, br_y] format.
batch_gt_instances (list[:obj:`InstanceData`]): Batch of
gt_instance. It usually includes ``bboxes`` and ``labels``
attributes.
batch_img_metas (list[dict]): Meta information of each image, e.g.,
image size, scaling factor, etc.
batch_gt_instances_ignore (list[:obj:`InstanceData`], Optional):
Batch of gt_instances_ignore. It includes ``bboxes`` attribute
data that is ignored during training and testing.
Defaults to None.
Returns:
dict[str, Tensor]: A dictionary of loss components.
"""
num_imgs = len(batch_img_metas)
featmap_sizes = [featmap.size()[-2:] for featmap in cls_scores]
assert len(featmap_sizes) == self.prior_generator.num_levels
device = cls_scores[0].device
anchor_list, valid_flag_list = self.get_anchors(
featmap_sizes, batch_img_metas, device=device)
flatten_cls_scores = torch.cat([
cls_score.permute(0, 2, 3, 1).reshape(num_imgs, -1,
self.cls_out_channels)
for cls_score in cls_scores
], 1)
decoded_bboxes = []
for anchor, bbox_pred in zip(anchor_list[0], bbox_preds):
anchor = anchor.reshape(-1, 4)
bbox_pred = bbox_pred.permute(0, 2, 3, 1).reshape(num_imgs, -1, 4)
bbox_pred = distance2bbox(anchor, bbox_pred)
decoded_bboxes.append(bbox_pred)
flatten_bboxes = torch.cat(decoded_bboxes, 1)
cls_reg_targets = self.get_targets(
flatten_cls_scores,
flatten_bboxes,
anchor_list,
valid_flag_list,
batch_gt_instances,
batch_img_metas,
batch_gt_instances_ignore=batch_gt_instances_ignore)
(anchor_list, labels_list, label_weights_list, bbox_targets_list,
assign_metrics_list, sampling_results_list) = cls_reg_targets
losses_cls, losses_bbox,\
cls_avg_factors, bbox_avg_factors = multi_apply(
self.loss_by_feat_single,
cls_scores,
decoded_bboxes,
labels_list,
label_weights_list,
bbox_targets_list,
assign_metrics_list,
self.prior_generator.strides)
cls_avg_factor = reduce_mean(sum(cls_avg_factors)).clamp_(min=1).item()
losses_cls = list(map(lambda x: x / cls_avg_factor, losses_cls))
bbox_avg_factor = reduce_mean(
sum(bbox_avg_factors)).clamp_(min=1).item()
losses_bbox = list(map(lambda x: x / bbox_avg_factor, losses_bbox))
return dict(loss_cls=losses_cls, loss_bbox=losses_bbox)
def get_targets(self,
cls_scores: Tensor,
bbox_preds: Tensor,
anchor_list: List[List[Tensor]],
valid_flag_list: List[List[Tensor]],
batch_gt_instances: InstanceList,
batch_img_metas: List[dict],
batch_gt_instances_ignore: OptInstanceList = None,
unmap_outputs=True):
"""Compute regression and classification targets for anchors in
multiple images.
Args:
cls_scores (Tensor): Classification predictions of images,
a 3D-Tensor with shape [num_imgs, num_priors, num_classes].
bbox_preds (Tensor): Decoded bboxes predictions of one image,
a 3D-Tensor with shape [num_imgs, num_priors, 4] in [tl_x,
tl_y, br_x, br_y] format.
anchor_list (list[list[Tensor]]): Multi level anchors of each
image. The outer list indicates images, and the inner list
corresponds to feature levels of the image. Each element of
the inner list is a tensor of shape (num_anchors, 4).
valid_flag_list (list[list[Tensor]]): Multi level valid flags of
each image. The outer list indicates images, and the inner list
corresponds to feature levels of the image. Each element of
the inner list is a tensor of shape (num_anchors, )
batch_gt_instances (list[:obj:`InstanceData`]): Batch of
gt_instance. It usually includes ``bboxes`` and ``labels``
attributes.
batch_img_metas (list[dict]): Meta information of each image, e.g.,
image size, scaling factor, etc.
batch_gt_instances_ignore (list[:obj:`InstanceData`], Optional):
Batch of gt_instances_ignore. It includes ``bboxes`` attribute
data that is ignored during training and testing.
Defaults to None.
unmap_outputs (bool): Whether to map outputs back to the original
set of anchors. Defaults to True.
Returns:
tuple: a tuple containing learning targets.
- anchors_list (list[list[Tensor]]): Anchors of each level.
- labels_list (list[Tensor]): Labels of each level.
- label_weights_list (list[Tensor]): Label weights of each
level.
- bbox_targets_list (list[Tensor]): BBox targets of each level.
- assign_metrics_list (list[Tensor]): alignment metrics of each
level.
"""
num_imgs = len(batch_img_metas)
assert len(anchor_list) == len(valid_flag_list) == num_imgs
# anchor number of multi levels
num_level_anchors = [anchors.size(0) for anchors in anchor_list[0]]
# concat all level anchors and flags to a single tensor
for i in range(num_imgs):
assert len(anchor_list[i]) == len(valid_flag_list[i])
anchor_list[i] = torch.cat(anchor_list[i])
valid_flag_list[i] = torch.cat(valid_flag_list[i])
# compute targets for each image
if batch_gt_instances_ignore is None:
batch_gt_instances_ignore = [None] * num_imgs
# anchor_list: list(b * [-1, 4])
(all_anchors, all_labels, all_label_weights, all_bbox_targets,
all_assign_metrics, sampling_results_list) = multi_apply(
self._get_targets_single,
cls_scores.detach(),
bbox_preds.detach(),
anchor_list,
valid_flag_list,
batch_gt_instances,
batch_img_metas,
batch_gt_instances_ignore,
unmap_outputs=unmap_outputs)
# no valid anchors
if any([labels is None for labels in all_labels]):
return None
# split targets to a list w.r.t. multiple levels
anchors_list = images_to_levels(all_anchors, num_level_anchors)
labels_list = images_to_levels(all_labels, num_level_anchors)
label_weights_list = images_to_levels(all_label_weights,
num_level_anchors)
bbox_targets_list = images_to_levels(all_bbox_targets,
num_level_anchors)
assign_metrics_list = images_to_levels(all_assign_metrics,
num_level_anchors)
return (anchors_list, labels_list, label_weights_list,
bbox_targets_list, assign_metrics_list, sampling_results_list)
def _get_targets_single(self,
cls_scores: Tensor,
bbox_preds: Tensor,
flat_anchors: Tensor,
valid_flags: Tensor,
gt_instances: InstanceData,
img_meta: dict,
gt_instances_ignore: Optional[InstanceData] = None,
unmap_outputs=True):
"""Compute regression, classification targets for anchors in a single
image.
Args:
cls_scores (list(Tensor)): Box scores for each image.
bbox_preds (list(Tensor)): Box energies / deltas for each image.
flat_anchors (Tensor): Multi-level anchors of the image, which are
concatenated into a single tensor of shape (num_anchors ,4)
valid_flags (Tensor): Multi level valid flags of the image,
which are concatenated into a single tensor of
shape (num_anchors,).
gt_instances (:obj:`InstanceData`): Ground truth of instance
annotations. It usually includes ``bboxes`` and ``labels``
attributes.
img_meta (dict): Meta information for current image.
gt_instances_ignore (:obj:`InstanceData`, optional): Instances
to be ignored during training. It includes ``bboxes`` attribute
data that is ignored during training and testing.
Defaults to None.
unmap_outputs (bool): Whether to map outputs back to the original
set of anchors. Defaults to True.
Returns:
tuple: N is the number of total anchors in the image.
- anchors (Tensor): All anchors in the image with shape (N, 4).
- labels (Tensor): Labels of all anchors in the image with shape
(N,).
- label_weights (Tensor): Label weights of all anchor in the
image with shape (N,).
- bbox_targets (Tensor): BBox targets of all anchors in the
image with shape (N, 4).
- norm_alignment_metrics (Tensor): Normalized alignment metrics
of all priors in the image with shape (N,).
"""
inside_flags = anchor_inside_flags(flat_anchors, valid_flags,
img_meta['img_shape'][:2],
self.train_cfg['allowed_border'])
if not inside_flags.any():
return (None, ) * 7
# assign gt and sample anchors
anchors = flat_anchors[inside_flags, :]
pred_instances = InstanceData(
scores=cls_scores[inside_flags, :],
bboxes=bbox_preds[inside_flags, :],
priors=anchors)
assign_result = self.assigner.assign(pred_instances, gt_instances,
gt_instances_ignore)
sampling_result = self.sampler.sample(assign_result, pred_instances,
gt_instances)
num_valid_anchors = anchors.shape[0]
bbox_targets = torch.zeros_like(anchors)
labels = anchors.new_full((num_valid_anchors, ),
self.num_classes,
dtype=torch.long)
label_weights = anchors.new_zeros(num_valid_anchors, dtype=torch.float)
assign_metrics = anchors.new_zeros(
num_valid_anchors, dtype=torch.float)
pos_inds = sampling_result.pos_inds
neg_inds = sampling_result.neg_inds
if len(pos_inds) > 0:
# point-based
pos_bbox_targets = sampling_result.pos_gt_bboxes
bbox_targets[pos_inds, :] = pos_bbox_targets
labels[pos_inds] = sampling_result.pos_gt_labels
if self.train_cfg['pos_weight'] <= 0:
label_weights[pos_inds] = 1.0
else:
label_weights[pos_inds] = self.train_cfg['pos_weight']
if len(neg_inds) > 0:
label_weights[neg_inds] = 1.0
class_assigned_gt_inds = torch.unique(
sampling_result.pos_assigned_gt_inds)
for gt_inds in class_assigned_gt_inds:
gt_class_inds = pos_inds[sampling_result.pos_assigned_gt_inds ==
gt_inds]
assign_metrics[gt_class_inds] = assign_result.max_overlaps[
gt_class_inds]
# map up to original set of anchors
if unmap_outputs:
num_total_anchors = flat_anchors.size(0)
anchors = unmap(anchors, num_total_anchors, inside_flags)
labels = unmap(
labels, num_total_anchors, inside_flags, fill=self.num_classes)
label_weights = unmap(label_weights, num_total_anchors,
inside_flags)
bbox_targets = unmap(bbox_targets, num_total_anchors, inside_flags)
assign_metrics = unmap(assign_metrics, num_total_anchors,
inside_flags)
return (anchors, labels, label_weights, bbox_targets, assign_metrics,
sampling_result)
def get_anchors(self,
featmap_sizes: List[tuple],
batch_img_metas: List[dict],
device: Union[torch.device, str] = 'cuda') \
-> Tuple[List[List[Tensor]], List[List[Tensor]]]:
"""Get anchors according to feature map sizes.
Args:
featmap_sizes (list[tuple]): Multi-level feature map sizes.
batch_img_metas (list[dict]): Image meta info.
device (torch.device or str): Device for returned tensors.
Defaults to cuda.
Returns:
tuple:
- anchor_list (list[list[Tensor]]): Anchors of each image.
- valid_flag_list (list[list[Tensor]]): Valid flags of each
image.
"""
num_imgs = len(batch_img_metas)
# since feature map sizes of all images are the same, we only compute
# anchors for one time
multi_level_anchors = self.prior_generator.grid_priors(
featmap_sizes, device=device, with_stride=True)
anchor_list = [multi_level_anchors for _ in range(num_imgs)]
# for each image, we compute valid flags of multi level anchors
valid_flag_list = []
for img_id, img_meta in enumerate(batch_img_metas):
multi_level_flags = self.prior_generator.valid_flags(
featmap_sizes, img_meta['pad_shape'], device)
valid_flag_list.append(multi_level_flags)
return anchor_list, valid_flag_list
@MODELS.register_module()
class RTMDetSepBNHead(RTMDetHead):
"""RTMDetHead with separated BN layers and shared conv layers.
Args:
num_classes (int): Number of categories excluding the background
category.
in_channels (int): Number of channels in the input feature map.
share_conv (bool): Whether to share conv layers between stages.
Defaults to True.
use_depthwise (bool): Whether to use depthwise separable convolution in
head. Defaults to False.
norm_cfg (:obj:`ConfigDict` or dict)): Config dict for normalization
layer. Defaults to dict(type='BN', momentum=0.03, eps=0.001).
act_cfg (:obj:`ConfigDict` or dict)): Config dict for activation layer.
Defaults to dict(type='SiLU').
pred_kernel_size (int): Kernel size of prediction layer. Defaults to 1.
"""
def __init__(self,
num_classes: int,
in_channels: int,
share_conv: bool = True,
use_depthwise: bool = False,
norm_cfg: ConfigType = dict(
type='BN', momentum=0.03, eps=0.001),
act_cfg: ConfigType = dict(type='SiLU'),
pred_kernel_size: int = 1,
exp_on_reg=False,
**kwargs) -> None:
self.share_conv = share_conv
self.exp_on_reg = exp_on_reg
self.use_depthwise = use_depthwise
super().__init__(
num_classes,
in_channels,
norm_cfg=norm_cfg,
act_cfg=act_cfg,
pred_kernel_size=pred_kernel_size,
**kwargs)
def _init_layers(self) -> None:
"""Initialize layers of the head."""
conv = DepthwiseSeparableConvModule \
if self.use_depthwise else ConvModule
self.cls_convs = nn.ModuleList()
self.reg_convs = nn.ModuleList()
self.rtm_cls = nn.ModuleList()
self.rtm_reg = nn.ModuleList()
if self.with_objectness:
self.rtm_obj = nn.ModuleList()
for n in range(len(self.prior_generator.strides)):
cls_convs = nn.ModuleList()
reg_convs = nn.ModuleList()
for i in range(self.stacked_convs):
chn = self.in_channels if i == 0 else self.feat_channels
cls_convs.append(
conv(
chn,
self.feat_channels,
3,
stride=1,
padding=1,
conv_cfg=self.conv_cfg,
norm_cfg=self.norm_cfg,
act_cfg=self.act_cfg))
reg_convs.append(
conv(
chn,
self.feat_channels,
3,
stride=1,
padding=1,
conv_cfg=self.conv_cfg,
norm_cfg=self.norm_cfg,
act_cfg=self.act_cfg))
self.cls_convs.append(cls_convs)
self.reg_convs.append(reg_convs)
self.rtm_cls.append(
nn.Conv2d(
self.feat_channels,
self.num_base_priors * self.cls_out_channels,
self.pred_kernel_size,
padding=self.pred_kernel_size // 2))
self.rtm_reg.append(
nn.Conv2d(
self.feat_channels,
self.num_base_priors * 4,
self.pred_kernel_size,
padding=self.pred_kernel_size // 2))
if self.with_objectness:
self.rtm_obj.append(
nn.Conv2d(
self.feat_channels,
1,
self.pred_kernel_size,
padding=self.pred_kernel_size // 2))
if self.share_conv:
for n in range(len(self.prior_generator.strides)):
for i in range(self.stacked_convs):
self.cls_convs[n][i].conv = self.cls_convs[0][i].conv
self.reg_convs[n][i].conv = self.reg_convs[0][i].conv
def init_weights(self) -> None:
"""Initialize weights of the head."""
for m in self.modules():
if isinstance(m, nn.Conv2d):
normal_init(m, mean=0, std=0.01)
if is_norm(m):
constant_init(m, 1)
bias_cls = bias_init_with_prob(0.01)
for rtm_cls, rtm_reg in zip(self.rtm_cls, self.rtm_reg):
normal_init(rtm_cls, std=0.01, bias=bias_cls)
normal_init(rtm_reg, std=0.01)
if self.with_objectness:
for rtm_obj in self.rtm_obj:
normal_init(rtm_obj, std=0.01, bias=bias_cls)
def forward(self, feats: Tuple[Tensor, ...]) -> tuple:
"""Forward features from the upstream network.
Args:
feats (tuple[Tensor]): Features from the upstream network, each is
a 4D-tensor.
Returns:
tuple: Usually a tuple of classification scores and bbox prediction
- cls_scores (tuple[Tensor]): Classification scores for all scale
levels, each is a 4D-tensor, the channels number is
num_anchors * num_classes.
- bbox_preds (tuple[Tensor]): Box energies / deltas for all scale
levels, each is a 4D-tensor, the channels number is
num_anchors * 4.
"""
cls_scores = []
bbox_preds = []
for idx, (x, stride) in enumerate(
zip(feats, self.prior_generator.strides)):
cls_feat = x
reg_feat = x
for cls_layer in self.cls_convs[idx]:
cls_feat = cls_layer(cls_feat)
cls_score = self.rtm_cls[idx](cls_feat)
for reg_layer in self.reg_convs[idx]:
reg_feat = reg_layer(reg_feat)
if self.with_objectness:
objectness = self.rtm_obj[idx](reg_feat)
cls_score = inverse_sigmoid(
sigmoid_geometric_mean(cls_score, objectness))
if self.exp_on_reg:
reg_dist = self.rtm_reg[idx](reg_feat).exp() * stride[0]
else:
reg_dist = self.rtm_reg[idx](reg_feat) * stride[0]
cls_scores.append(cls_score)
bbox_preds.append(reg_dist)
return tuple(cls_scores), tuple(bbox_preds)