-
Notifications
You must be signed in to change notification settings - Fork 9.5k
/
loading.py
610 lines (496 loc) · 21.1 KB
/
loading.py
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
266
267
268
269
270
271
272
273
274
275
276
277
278
279
280
281
282
283
284
285
286
287
288
289
290
291
292
293
294
295
296
297
298
299
300
301
302
303
304
305
306
307
308
309
310
311
312
313
314
315
316
317
318
319
320
321
322
323
324
325
326
327
328
329
330
331
332
333
334
335
336
337
338
339
340
341
342
343
344
345
346
347
348
349
350
351
352
353
354
355
356
357
358
359
360
361
362
363
364
365
366
367
368
369
370
371
372
373
374
375
376
377
378
379
380
381
382
383
384
385
386
387
388
389
390
391
392
393
394
395
396
397
398
399
400
401
402
403
404
405
406
407
408
409
410
411
412
413
414
415
416
417
418
419
420
421
422
423
424
425
426
427
428
429
430
431
432
433
434
435
436
437
438
439
440
441
442
443
444
445
446
447
448
449
450
451
452
453
454
455
456
457
458
459
460
461
462
463
464
465
466
467
468
469
470
471
472
473
474
475
476
477
478
479
480
481
482
483
484
485
486
487
488
489
490
491
492
493
494
495
496
497
498
499
500
501
502
503
504
505
506
507
508
509
510
511
512
513
514
515
516
517
518
519
520
521
522
523
524
525
526
527
528
529
530
531
532
533
534
535
536
537
538
539
540
541
542
543
544
545
546
547
548
549
550
551
552
553
554
555
556
557
558
559
560
561
562
563
564
565
566
567
568
569
570
571
572
573
574
575
576
577
578
579
580
581
582
583
584
585
586
587
588
589
590
591
592
593
594
595
596
597
598
599
600
601
602
603
604
605
606
607
608
609
610
# Copyright (c) OpenMMLab. All rights reserved.
import os.path as osp
import mmcv
import numpy as np
import pycocotools.mask as maskUtils
from mmdet.core import BitmapMasks, PolygonMasks
from ..builder import PIPELINES
try:
from panopticapi.utils import rgb2id
except ImportError:
rgb2id = None
@PIPELINES.register_module()
class LoadImageFromFile:
"""Load an image from file.
Required keys are "img_prefix" and "img_info" (a dict that must contain the
key "filename"). Added or updated keys are "filename", "img", "img_shape",
"ori_shape" (same as `img_shape`), "pad_shape" (same as `img_shape`),
"scale_factor" (1.0) and "img_norm_cfg" (means=0 and stds=1).
Args:
to_float32 (bool): Whether to convert the loaded image to a float32
numpy array. If set to False, the loaded image is an uint8 array.
Defaults to False.
color_type (str): The flag argument for :func:`mmcv.imfrombytes`.
Defaults to 'color'.
file_client_args (dict): Arguments to instantiate a FileClient.
See :class:`mmcv.fileio.FileClient` for details.
Defaults to ``dict(backend='disk')``.
"""
def __init__(self,
to_float32=False,
color_type='color',
channel_order='bgr',
file_client_args=dict(backend='disk')):
self.to_float32 = to_float32
self.color_type = color_type
self.channel_order = channel_order
self.file_client_args = file_client_args.copy()
self.file_client = None
def __call__(self, results):
"""Call functions to load image and get image meta information.
Args:
results (dict): Result dict from :obj:`mmdet.CustomDataset`.
Returns:
dict: The dict contains loaded image and meta information.
"""
if self.file_client is None:
self.file_client = mmcv.FileClient(**self.file_client_args)
if results['img_prefix'] is not None:
filename = osp.join(results['img_prefix'],
results['img_info']['filename'])
else:
filename = results['img_info']['filename']
img_bytes = self.file_client.get(filename)
img = mmcv.imfrombytes(
img_bytes, flag=self.color_type, channel_order=self.channel_order)
if self.to_float32:
img = img.astype(np.float32)
results['filename'] = filename
results['ori_filename'] = results['img_info']['filename']
results['img'] = img
results['img_shape'] = img.shape
results['ori_shape'] = img.shape
results['img_fields'] = ['img']
return results
def __repr__(self):
repr_str = (f'{self.__class__.__name__}('
f'to_float32={self.to_float32}, '
f"color_type='{self.color_type}', "
f"channel_order='{self.channel_order}', "
f'file_client_args={self.file_client_args})')
return repr_str
@PIPELINES.register_module()
class LoadImageFromWebcam(LoadImageFromFile):
"""Load an image from webcam.
Similar with :obj:`LoadImageFromFile`, but the image read from webcam is in
``results['img']``.
"""
def __call__(self, results):
"""Call functions to add image meta information.
Args:
results (dict): Result dict with Webcam read image in
``results['img']``.
Returns:
dict: The dict contains loaded image and meta information.
"""
img = results['img']
if self.to_float32:
img = img.astype(np.float32)
results['filename'] = None
results['ori_filename'] = None
results['img'] = img
results['img_shape'] = img.shape
results['ori_shape'] = img.shape
results['img_fields'] = ['img']
return results
@PIPELINES.register_module()
class LoadMultiChannelImageFromFiles:
"""Load multi-channel images from a list of separate channel files.
Required keys are "img_prefix" and "img_info" (a dict that must contain the
key "filename", which is expected to be a list of filenames).
Added or updated keys are "filename", "img", "img_shape",
"ori_shape" (same as `img_shape`), "pad_shape" (same as `img_shape`),
"scale_factor" (1.0) and "img_norm_cfg" (means=0 and stds=1).
Args:
to_float32 (bool): Whether to convert the loaded image to a float32
numpy array. If set to False, the loaded image is an uint8 array.
Defaults to False.
color_type (str): The flag argument for :func:`mmcv.imfrombytes`.
Defaults to 'color'.
file_client_args (dict): Arguments to instantiate a FileClient.
See :class:`mmcv.fileio.FileClient` for details.
Defaults to ``dict(backend='disk')``.
"""
def __init__(self,
to_float32=False,
color_type='unchanged',
file_client_args=dict(backend='disk')):
self.to_float32 = to_float32
self.color_type = color_type
self.file_client_args = file_client_args.copy()
self.file_client = None
def __call__(self, results):
"""Call functions to load multiple images and get images meta
information.
Args:
results (dict): Result dict from :obj:`mmdet.CustomDataset`.
Returns:
dict: The dict contains loaded images and meta information.
"""
if self.file_client is None:
self.file_client = mmcv.FileClient(**self.file_client_args)
if results['img_prefix'] is not None:
filename = [
osp.join(results['img_prefix'], fname)
for fname in results['img_info']['filename']
]
else:
filename = results['img_info']['filename']
img = []
for name in filename:
img_bytes = self.file_client.get(name)
img.append(mmcv.imfrombytes(img_bytes, flag=self.color_type))
img = np.stack(img, axis=-1)
if self.to_float32:
img = img.astype(np.float32)
results['filename'] = filename
results['ori_filename'] = results['img_info']['filename']
results['img'] = img
results['img_shape'] = img.shape
results['ori_shape'] = img.shape
# Set initial values for default meta_keys
results['pad_shape'] = img.shape
results['scale_factor'] = 1.0
num_channels = 1 if len(img.shape) < 3 else img.shape[2]
results['img_norm_cfg'] = dict(
mean=np.zeros(num_channels, dtype=np.float32),
std=np.ones(num_channels, dtype=np.float32),
to_rgb=False)
return results
def __repr__(self):
repr_str = (f'{self.__class__.__name__}('
f'to_float32={self.to_float32}, '
f"color_type='{self.color_type}', "
f'file_client_args={self.file_client_args})')
return repr_str
@PIPELINES.register_module()
class LoadAnnotations:
"""Load multiple types of annotations.
Args:
with_bbox (bool): Whether to parse and load the bbox annotation.
Default: True.
with_label (bool): Whether to parse and load the label annotation.
Default: True.
with_mask (bool): Whether to parse and load the mask annotation.
Default: False.
with_seg (bool): Whether to parse and load the semantic segmentation
annotation. Default: False.
poly2mask (bool): Whether to convert the instance masks from polygons
to bitmaps. Default: True.
denorm_bbox (bool): Whether to convert bbox from relative value to
absolute value. Only used in OpenImage Dataset.
Default: False.
file_client_args (dict): Arguments to instantiate a FileClient.
See :class:`mmcv.fileio.FileClient` for details.
Defaults to ``dict(backend='disk')``.
"""
def __init__(self,
with_bbox=True,
with_label=True,
with_mask=False,
with_seg=False,
poly2mask=True,
denorm_bbox=False,
file_client_args=dict(backend='disk')):
self.with_bbox = with_bbox
self.with_label = with_label
self.with_mask = with_mask
self.with_seg = with_seg
self.poly2mask = poly2mask
self.denorm_bbox = denorm_bbox
self.file_client_args = file_client_args.copy()
self.file_client = None
def _load_bboxes(self, results):
"""Private function to load bounding box annotations.
Args:
results (dict): Result dict from :obj:`mmdet.CustomDataset`.
Returns:
dict: The dict contains loaded bounding box annotations.
"""
ann_info = results['ann_info']
results['gt_bboxes'] = ann_info['bboxes'].copy()
if self.denorm_bbox:
h, w = results['img_shape'][:2]
bbox_num = results['gt_bboxes'].shape[0]
if bbox_num != 0:
results['gt_bboxes'][:, 0::2] *= w
results['gt_bboxes'][:, 1::2] *= h
results['gt_bboxes'] = results['gt_bboxes'].astype(np.float32)
gt_bboxes_ignore = ann_info.get('bboxes_ignore', None)
if gt_bboxes_ignore is not None:
results['gt_bboxes_ignore'] = gt_bboxes_ignore.copy()
results['bbox_fields'].append('gt_bboxes_ignore')
results['bbox_fields'].append('gt_bboxes')
gt_is_group_ofs = ann_info.get('gt_is_group_ofs', None)
if gt_is_group_ofs is not None:
results['gt_is_group_ofs'] = gt_is_group_ofs.copy()
return results
def _load_labels(self, results):
"""Private function to load label annotations.
Args:
results (dict): Result dict from :obj:`mmdet.CustomDataset`.
Returns:
dict: The dict contains loaded label annotations.
"""
results['gt_labels'] = results['ann_info']['labels'].copy()
return results
def _poly2mask(self, mask_ann, img_h, img_w):
"""Private function to convert masks represented with polygon to
bitmaps.
Args:
mask_ann (list | dict): Polygon mask annotation input.
img_h (int): The height of output mask.
img_w (int): The width of output mask.
Returns:
numpy.ndarray: The decode bitmap mask of shape (img_h, img_w).
"""
if isinstance(mask_ann, list):
# polygon -- a single object might consist of multiple parts
# we merge all parts into one mask rle code
rles = maskUtils.frPyObjects(mask_ann, img_h, img_w)
rle = maskUtils.merge(rles)
elif isinstance(mask_ann['counts'], list):
# uncompressed RLE
rle = maskUtils.frPyObjects(mask_ann, img_h, img_w)
else:
# rle
rle = mask_ann
mask = maskUtils.decode(rle)
return mask
def process_polygons(self, polygons):
"""Convert polygons to list of ndarray and filter invalid polygons.
Args:
polygons (list[list]): Polygons of one instance.
Returns:
list[numpy.ndarray]: Processed polygons.
"""
polygons = [np.array(p) for p in polygons]
valid_polygons = []
for polygon in polygons:
if len(polygon) % 2 == 0 and len(polygon) >= 6:
valid_polygons.append(polygon)
return valid_polygons
def _load_masks(self, results):
"""Private function to load mask annotations.
Args:
results (dict): Result dict from :obj:`mmdet.CustomDataset`.
Returns:
dict: The dict contains loaded mask annotations.
If ``self.poly2mask`` is set ``True``, `gt_mask` will contain
:obj:`PolygonMasks`. Otherwise, :obj:`BitmapMasks` is used.
"""
h, w = results['img_info']['height'], results['img_info']['width']
gt_masks = results['ann_info']['masks']
if self.poly2mask:
gt_masks = BitmapMasks(
[self._poly2mask(mask, h, w) for mask in gt_masks], h, w)
else:
gt_masks = PolygonMasks(
[self.process_polygons(polygons) for polygons in gt_masks], h,
w)
results['gt_masks'] = gt_masks
results['mask_fields'].append('gt_masks')
return results
def _load_semantic_seg(self, results):
"""Private function to load semantic segmentation annotations.
Args:
results (dict): Result dict from :obj:`dataset`.
Returns:
dict: The dict contains loaded semantic segmentation annotations.
"""
if self.file_client is None:
self.file_client = mmcv.FileClient(**self.file_client_args)
filename = osp.join(results['seg_prefix'],
results['ann_info']['seg_map'])
img_bytes = self.file_client.get(filename)
results['gt_semantic_seg'] = mmcv.imfrombytes(
img_bytes, flag='unchanged').squeeze()
results['seg_fields'].append('gt_semantic_seg')
return results
def __call__(self, results):
"""Call function to load multiple types annotations.
Args:
results (dict): Result dict from :obj:`mmdet.CustomDataset`.
Returns:
dict: The dict contains loaded bounding box, label, mask and
semantic segmentation annotations.
"""
if self.with_bbox:
results = self._load_bboxes(results)
if results is None:
return None
if self.with_label:
results = self._load_labels(results)
if self.with_mask:
results = self._load_masks(results)
if self.with_seg:
results = self._load_semantic_seg(results)
return results
def __repr__(self):
repr_str = self.__class__.__name__
repr_str += f'(with_bbox={self.with_bbox}, '
repr_str += f'with_label={self.with_label}, '
repr_str += f'with_mask={self.with_mask}, '
repr_str += f'with_seg={self.with_seg}, '
repr_str += f'poly2mask={self.poly2mask}, '
repr_str += f'poly2mask={self.file_client_args})'
return repr_str
@PIPELINES.register_module()
class LoadPanopticAnnotations(LoadAnnotations):
"""Load multiple types of panoptic annotations.
Args:
with_bbox (bool): Whether to parse and load the bbox annotation.
Default: True.
with_label (bool): Whether to parse and load the label annotation.
Default: True.
with_mask (bool): Whether to parse and load the mask annotation.
Default: True.
with_seg (bool): Whether to parse and load the semantic segmentation
annotation. Default: True.
file_client_args (dict): Arguments to instantiate a FileClient.
See :class:`mmcv.fileio.FileClient` for details.
Defaults to ``dict(backend='disk')``.
"""
def __init__(self,
with_bbox=True,
with_label=True,
with_mask=True,
with_seg=True,
file_client_args=dict(backend='disk')):
if rgb2id is None:
raise RuntimeError(
'panopticapi is not installed, please install it by: '
'pip install git+https://github.com/cocodataset/'
'panopticapi.git.')
super(LoadPanopticAnnotations, self).__init__(
with_bbox=with_bbox,
with_label=with_label,
with_mask=with_mask,
with_seg=with_seg,
poly2mask=True,
denorm_bbox=False,
file_client_args=file_client_args)
def _load_masks_and_semantic_segs(self, results):
"""Private function to load mask and semantic segmentation annotations.
In gt_semantic_seg, the foreground label is from `0` to
`num_things - 1`, the background label is from `num_things` to
`num_things + num_stuff - 1`, 255 means the ignored label (`VOID`).
Args:
results (dict): Result dict from :obj:`mmdet.CustomDataset`.
Returns:
dict: The dict contains loaded mask and semantic segmentation
annotations. `BitmapMasks` is used for mask annotations.
"""
if self.file_client is None:
self.file_client = mmcv.FileClient(**self.file_client_args)
filename = osp.join(results['seg_prefix'],
results['ann_info']['seg_map'])
img_bytes = self.file_client.get(filename)
pan_png = mmcv.imfrombytes(
img_bytes, flag='color', channel_order='rgb').squeeze()
pan_png = rgb2id(pan_png)
gt_masks = []
gt_seg = np.zeros_like(pan_png) + 255 # 255 as ignore
for mask_info in results['ann_info']['masks']:
mask = (pan_png == mask_info['id'])
gt_seg = np.where(mask, mask_info['category'], gt_seg)
# The legal thing masks
if mask_info.get('is_thing'):
gt_masks.append(mask.astype(np.uint8))
if self.with_mask:
h, w = results['img_info']['height'], results['img_info']['width']
gt_masks = BitmapMasks(gt_masks, h, w)
results['gt_masks'] = gt_masks
results['mask_fields'].append('gt_masks')
if self.with_seg:
results['gt_semantic_seg'] = gt_seg
results['seg_fields'].append('gt_semantic_seg')
return results
def __call__(self, results):
"""Call function to load multiple types panoptic annotations.
Args:
results (dict): Result dict from :obj:`mmdet.CustomDataset`.
Returns:
dict: The dict contains loaded bounding box, label, mask and
semantic segmentation annotations.
"""
if self.with_bbox:
results = self._load_bboxes(results)
if results is None:
return None
if self.with_label:
results = self._load_labels(results)
if self.with_mask or self.with_seg:
# The tasks completed by '_load_masks' and '_load_semantic_segs'
# in LoadAnnotations are merged to one function.
results = self._load_masks_and_semantic_segs(results)
return results
@PIPELINES.register_module()
class LoadProposals:
"""Load proposal pipeline.
Required key is "proposals". Updated keys are "proposals", "bbox_fields".
Args:
num_max_proposals (int, optional): Maximum number of proposals to load.
If not specified, all proposals will be loaded.
"""
def __init__(self, num_max_proposals=None):
self.num_max_proposals = num_max_proposals
def __call__(self, results):
"""Call function to load proposals from file.
Args:
results (dict): Result dict from :obj:`mmdet.CustomDataset`.
Returns:
dict: The dict contains loaded proposal annotations.
"""
proposals = results['proposals']
if proposals.shape[1] not in (4, 5):
raise AssertionError(
'proposals should have shapes (n, 4) or (n, 5), '
f'but found {proposals.shape}')
proposals = proposals[:, :4]
if self.num_max_proposals is not None:
proposals = proposals[:self.num_max_proposals]
if len(proposals) == 0:
proposals = np.array([[0, 0, 0, 0]], dtype=np.float32)
results['proposals'] = proposals
results['bbox_fields'].append('proposals')
return results
def __repr__(self):
return self.__class__.__name__ + \
f'(num_max_proposals={self.num_max_proposals})'
@PIPELINES.register_module()
class FilterAnnotations:
"""Filter invalid annotations.
Args:
min_gt_bbox_wh (tuple[int]): Minimum width and height of ground truth
boxes.
keep_empty (bool): Whether to return None when it
becomes an empty bbox after filtering. Default: True
"""
def __init__(self, min_gt_bbox_wh, keep_empty=True):
# TODO: add more filter options
self.min_gt_bbox_wh = min_gt_bbox_wh
self.keep_empty = keep_empty
def __call__(self, results):
assert 'gt_bboxes' in results
gt_bboxes = results['gt_bboxes']
if gt_bboxes.shape[0] == 0:
return results
w = gt_bboxes[:, 2] - gt_bboxes[:, 0]
h = gt_bboxes[:, 3] - gt_bboxes[:, 1]
keep = (w > self.min_gt_bbox_wh[0]) & (h > self.min_gt_bbox_wh[1])
if not keep.any():
if self.keep_empty:
return None
else:
return results
else:
keys = ('gt_bboxes', 'gt_labels', 'gt_masks', 'gt_semantic_seg')
for key in keys:
if key in results:
results[key] = results[key][keep]
return results
def __repr__(self):
return self.__class__.__name__ + \
f'(min_gt_bbox_wh={self.min_gt_bbox_wh},' \
f'always_keep={self.always_keep})'