From aff6a7cab28c162d59ffdeae8b89ecd8cf4517b6 Mon Sep 17 00:00:00 2001 From: irexyc Date: Thu, 2 Feb 2023 14:33:29 +0800 Subject: [PATCH 1/2] fix mmaction2 visualizer --- .../mmaction/deploy/video_recognition.py | 66 ++++++++++--------- 1 file changed, 34 insertions(+), 32 deletions(-) diff --git a/mmdeploy/codebase/mmaction/deploy/video_recognition.py b/mmdeploy/codebase/mmaction/deploy/video_recognition.py index a5e5e77ffd..c21379c71c 100644 --- a/mmdeploy/codebase/mmaction/deploy/video_recognition.py +++ b/mmdeploy/codebase/mmaction/deploy/video_recognition.py @@ -186,42 +186,44 @@ def visualize(self, try: import decord from moviepy.editor import ImageSequenceClip + + save_dir, save_name = osp.split(output_file) + video = decord.VideoReader(image) + frames = [x.asnumpy()[..., ::-1] for x in video] + pred_scores = result.pred_scores.item.tolist() + score_tuples = tuple(zip(range(len(pred_scores)), pred_scores)) + score_sorted = sorted( + score_tuples, key=itemgetter(1), reverse=True) + top1_item = score_sorted[0] + short_edge_length = min(frames[0].shape[:2]) + scale = short_edge_length // 224. + img_scale = min(max(scale, 0.3), 3.0) + text_cfg = { + 'positions': np.array([(img_scale * 5, ) * 2]).astype(np.int32), + 'font_sizes': int(img_scale * 7), + 'font_families': 'monospace', + 'colors': 'white', + 'bboxes': dict(facecolor='black', alpha=0.5, boxstyle='Round') + } + + visualizer = self.get_visualizer(window_name, save_dir) + out_frames = [] + for i, frame in enumerate(frames): + visualizer.set_image(frame) + texts = [f'Frame {i} of total {len(frames)} frames'] + texts.append( + f'top-1 label: {top1_item[0]}, score: {top1_item[1]}') + visualizer.draw_texts('\n'.join(texts), **text_cfg) + drawn_img = visualizer.get_image() + out_frames.append(drawn_img) + out_frames = [x[..., ::-1] for x in out_frames] + video_clips = ImageSequenceClip(out_frames, fps=30) + output_file = output_file[:output_file.rfind('.')] + '.mp4' + video_clips.write_videofile(output_file) except Exception: logger.warn('Please install moviepy and decord to ' 'enable visualize for mmaction') - save_dir, save_name = osp.split(output_file) - video = decord.VideoReader(image) - frames = [x.asnumpy()[..., ::-1] for x in video] - pred_scores = result.pred_scores.item.tolist() - score_tuples = tuple(zip(range(len(pred_scores)), pred_scores)) - score_sorted = sorted(score_tuples, key=itemgetter(1), reverse=True) - top1_item = score_sorted[0] - short_edge_length = min(frames[0].shape[:2]) - scale = short_edge_length // 224. - img_scale = min(max(scale, 0.3), 3.0) - text_cfg = { - 'positions': np.array([(img_scale * 5, ) * 2]).astype(np.int32), - 'font_sizes': int(img_scale * 7), - 'font_families': 'monospace', - 'colors': 'white', - 'bboxes': dict(facecolor='black', alpha=0.5, boxstyle='Round') - } - - visualizer = self.get_visualizer(window_name, save_dir) - out_frames = [] - for i, frame in enumerate(frames): - visualizer.set_image(frame) - texts = [f'Frame {i} of total {len(frames)} frames'] - texts.append(f'top-1 label: {top1_item[0]}, score: {top1_item[0]}') - visualizer.draw_texts('\n'.join(texts), **text_cfg) - drawn_img = visualizer.get_image() - out_frames.append(drawn_img) - out_frames = [x[..., ::-1] for x in out_frames] - video_clips = ImageSequenceClip(out_frames, fps=30) - output_file = output_file[:output_file.rfind('.')] + '.mp4' - video_clips.write_videofile(output_file) - @staticmethod def get_partition_cfg(partition_type: str) -> Dict: """Get a certain partition config. From e070edfc5aab48f48c287708c226427f8993aeee Mon Sep 17 00:00:00 2001 From: irexyc Date: Thu, 2 Feb 2023 14:48:53 +0800 Subject: [PATCH 2/2] fix lint --- mmdeploy/codebase/mmaction/deploy/video_recognition.py | 3 ++- 1 file changed, 2 insertions(+), 1 deletion(-) diff --git a/mmdeploy/codebase/mmaction/deploy/video_recognition.py b/mmdeploy/codebase/mmaction/deploy/video_recognition.py index c21379c71c..be58afd83e 100644 --- a/mmdeploy/codebase/mmaction/deploy/video_recognition.py +++ b/mmdeploy/codebase/mmaction/deploy/video_recognition.py @@ -199,7 +199,8 @@ def visualize(self, scale = short_edge_length // 224. img_scale = min(max(scale, 0.3), 3.0) text_cfg = { - 'positions': np.array([(img_scale * 5, ) * 2]).astype(np.int32), + 'positions': + np.array([(img_scale * 5, ) * 2]).astype(np.int32), 'font_sizes': int(img_scale * 7), 'font_families': 'monospace', 'colors': 'white',