Skip to content
New issue

Have a question about this project? Sign up for a free GitHub account to open an issue and contact its maintainers and the community.

By clicking “Sign up for GitHub”, you agree to our terms of service and privacy statement. We’ll occasionally send you account related emails.

Already on GitHub? Sign in to your account

convert TensorRT model failed #784

Closed
gzxy-0102 opened this issue Jul 21, 2022 · 36 comments
Closed

convert TensorRT model failed #784

gzxy-0102 opened this issue Jul 21, 2022 · 36 comments
Assignees

Comments

@gzxy-0102
Copy link

Describe the bug
使用代码调用模型转换,将pytorch模型转换为tensorRT模型时执行失败
Using code to call model conversion, the execution fails when converting a pytorch model to a tensorRT model

运行流程为fastapi接收到模型转换请求 下发到huey队列 huey队列代码与deploy.py代码基本一致
The running process is that fastapi receives the model conversion request and sends it to the huey queue. The huey queue code is basically the same as the deploy.py code.

当我放弃tensorRT转为onnx后 可以正常转换 但是在实例化Detector后 接口层被阻塞在那里 并没有往下执行
When I gave up tensorRT and switched to onnx, I could convert normally, but after instantiating the Detector, the interface layer was blocked there and did not go down.
image

也没有错误信息 除了几个config的info日志 并没有任何其他的反馈
There is no error message, except for a few config info logs and no other feedback

Reproduction

  1. What command or script did you run?
    我没有运行命令去执行模型转换 而是通过代码调起deploy代码去执行转换 实际上和执行命令转换没有什么区别 可以尝试以下列命令复现
    I did not run the command to perform the model transformation, but invoked the deploy code to perform the transformation through the code. In fact, it is no different from executing the command transformation. You can try the following command to reproduce
python tools/deploy.py \
    configs/mmdeploy/mmdet/detection/detection_tensorrt-fp16_dynamic-320x320-1344x1344.py \
    /static/work_dirs/bcccd9e0-41a1-408d-9dfa-f4e634e9608c/yolox_l_8x8_300e_coco.py \
    /static/work_dirs/bcccd9e0-41a1-408d-9dfa-f4e634e9608c/best_bbox_mAP_epoch_149.pth \
    /dataset/car-damage-coco/images/val/1.jpg \
    --work-dir /static/work_dirs/bcccd9e0-41a1-408d-9dfa-f4e634e9608c \
    --device cuda:0 \
    --log-level DEBUG \
  1. Did you make any modifications on the code or config? Did you understand what you have modified?

Environment

2022-07-21 09:23:24,423 - mmdeploy - INFO - 

2022-07-21 09:23:24,424 - mmdeploy - INFO - **********Environmental information**********
2022-07-21 09:23:32,096 - mmdeploy - INFO - sys.platform: win32
2022-07-21 09:23:32,096 - mmdeploy - INFO - Python: 3.9.0 (default, Nov 15 2020, 08:30:55) [MSC v.1916 64 bit (AMD64)]
2022-07-21 09:23:32,096 - mmdeploy - INFO - CUDA available: True
2022-07-21 09:23:32,096 - mmdeploy - INFO - GPU 0: NVIDIA GeForce GTX 1060 6GB
2022-07-21 09:23:32,096 - mmdeploy - INFO - CUDA_HOME: D:\CUDAToolkit
2022-07-21 09:23:32,096 - mmdeploy - INFO - NVCC: Cuda compilation tools, release 11.3, V11.3.109
2022-07-21 09:23:32,096 - mmdeploy - INFO - MSVC: 用于 x64 的 Microsoft (R) C/C++ 优化编译器 19.29.30145 版
2022-07-21 09:23:32,097 - mmdeploy - INFO - GCC: n/a
2022-07-21 09:23:32,097 - mmdeploy - INFO - PyTorch: 1.11.0+cu113
  - CPU capability usage: AVX2
  - CUDA Runtime 11.3
  - NVCC architecture flags: -gencode;arch=compute_37,code=sm_37;-gencode;arch=compute_50,code=sm_50;-gencode;arch=compute_60,code=sm_60;-gencode;arch=compute_61,code=sm_61;-gencode;arch=compute_70,code=sm_70;-gencode;arch=compute_75,code=sm_75;-gencode;arch=compute_80,code=sm_80;-gencode;arch=compute_86,code=sm_86;-gencode;arch=compute_37,code=compute_37
  - CuDNN 8.2
  - Magma 2.5.4
  - Build settings: BLAS_INFO=mkl, BUILD_TYPE=Release, CUDA_VERSION=11.3, CUDNN_VERSION=8.2.0, CXX_COMPILER=C:/actions-runner/_work/pytorch/pytorch/builder/windows/tmp_bin/sccache-cl.exe, CXX_FLAGS=/DWIN32 /D_WINDOWS /GR /EHsc /w /bigobj -DUSE_PTHREADPOOL -openmp:experimental -IC:/actions-runner/_work/pytorch/pytorch/builder/windows/mkl/include -DNDEBUG -DUSE_KINETO -DLIBKINETO_NOCUPTI -DUSE_FBGEMM -DUSE_XNNPACK -DSYMBOLICATE_MOBILE_DEBUG_HANDLE -DEDGE_PROFILER_USE_KINETO, LAPACK_INFO=mkl, PERF_WITH_AVX=1, PERF_WITH_AVX2=1, PERF_WITH_AVX512=1, TORCH_VERSION=1.11.0, USE_CUDA=ON, USE_CUDNN=ON, USE_EXCEPTION_PTR=1, USE_GFLAGS=OFF, USE_GLOG=OFF, USE_MKL=ON, USE_MKLDNN=OFF, USE_MPI=OFF, USE_NCCL=OFF, USE_NNPACK=OFF, USE_OPENMP=ON, USE_ROCM=OFF,

2022-07-21 09:23:32,098 - mmdeploy - INFO - TorchVision: 0.12.0+cu113
2022-07-21 09:23:32,098 - mmdeploy - INFO - OpenCV: 4.6.0
2022-07-21 09:23:32,098 - mmdeploy - INFO - MMCV: 1.6.0
2022-07-21 09:23:32,099 - mmdeploy - INFO - MMCV Compiler: MSVC 192930140
2022-07-21 09:23:32,099 - mmdeploy - INFO - MMCV CUDA Compiler: 11.3
2022-07-21 09:23:32,099 - mmdeploy - INFO - MMDeploy: 0.6.0+1d6437c
2022-07-21 09:23:32,099 - mmdeploy - INFO -

2022-07-21 09:23:32,099 - mmdeploy - INFO - **********Backend information**********
2022-07-21 09:23:36,070 - mmdeploy - INFO - onnxruntime: 1.11.1 ops_is_avaliable : True
2022-07-21 09:23:36,168 - mmdeploy - INFO - tensorrt: 8.4.1.5   ops_is_avaliable : True
2022-07-21 09:23:36,208 - mmdeploy - INFO - ncnn: None  ops_is_avaliable : False
2022-07-21 09:23:36,210 - mmdeploy - INFO - pplnn_is_avaliable: False
2022-07-21 09:23:36,212 - mmdeploy - INFO - openvino_is_avaliable: False
2022-07-21 09:23:36,212 - mmdeploy - INFO - 

2022-07-21 09:23:36,212 - mmdeploy - INFO - **********Codebase information**********
2022-07-21 09:23:36,232 - mmdeploy - INFO - mmdet:      2.25.0
2022-07-21 09:23:36,232 - mmdeploy - INFO - mmseg:      None
2022-07-21 09:23:36,232 - mmdeploy - INFO - mmcls:      None
2022-07-21 09:23:36,232 - mmdeploy - INFO - mmocr:      None
2022-07-21 09:23:36,233 - mmdeploy - INFO - mmedit:     None
2022-07-21 09:23:36,233 - mmdeploy - INFO - mmdet3d:    None
2022-07-21 09:23:36,233 - mmdeploy - INFO - mmpose:     None
2022-07-21 09:23:36,233 - mmdeploy - INFO - mmrotate:   None

Error traceback
这是pytorch转tensorRT模型的日志
This is the log of pytorch to tensorRT model

2022-07-21 09:57:35,423 - mmdeploy - INFO - 当前任务ID:bcccd9e0-41a1-408d-9dfa-f4e634e9608c
Registry:{'input_size': (640, 640), 'random_size_range': (15, 25), 'random_size_interval': 10, 'backbone': {'type': 'CSPDarknet', 'deepen_factor': 1.0, 'widen_factor': 1.0}, 'neck': {'type': 'YOLOXPAFPN', 'in_channels': [256, 512, 1024], 'out_channels': 256, 'num_csp_blocks': 3}, 'bbox_head': {'type': 'YOLOXHead', 'num_classes': 5, 'in_channels': 256, 'feat_channels': 256}, 'train_cfg': None, 'test_cfg': {'score_thr':0.01, 'nms': {'type': 'nms', 'iou_threshold': 0.65}}}
Registry:{'deepen_factor': 1.0, 'widen_factor': 1.0}
Registry:{}
Registry:{}
Registry:{}
Registry:{}
Registry:{}
Registry:{}
Registry:{}
Registry:{}
Registry:{}
Registry:{}
Registry:{}
Registry:{}
Registry:{}
Registry:{}
Registry:{}
Registry:{}
Registry:{}
Registry:{}
Registry:{}
Registry:{}
Registry:{}
Registry:{}
Registry:{}
Registry:{}
Registry:{}
Registry:{}
Registry:{}
Registry:{}
Registry:{}
Registry:{}
Registry:{}
Registry:{}
Registry:{}
Registry:{}
Registry:{}
Registry:{}
Registry:{}
Registry:{}
Registry:{}
Registry:{}
Registry:{}
Registry:{}
Registry:{}
Registry:{}
Registry:{}
Registry:{}
Registry:{}
Registry:{}
Registry:{}
Registry:{}
Registry:{}
Registry:{}
Registry:{}
Registry:{}
Registry:{}
Registry:{}
Registry:{}
Registry:{}
Registry:{}
Registry:{}
Registry:{}
Registry:{}
Registry:{}
Registry:{}
Registry:{}
Registry:{}
Registry:{}
Registry:{'in_channels': [256, 512, 1024], 'out_channels': 256, 'num_csp_blocks': 3}
Registry:{}
Registry:{}
Registry:{}
Registry:{}
Registry:{}
Registry:{}
Registry:{}
Registry:{}
Registry:{}
Registry:{}
Registry:{}
Registry:{}
Registry:{}
Registry:{}
Registry:{}
Registry:{}
Registry:{}
Registry:{}
Registry:{}
Registry:{}
Registry:{}
Registry:{}
Registry:{}
Registry:{}
Registry:{}
Registry:{}
Registry:{}
Registry:{}
Registry:{}
Registry:{}
Registry:{}
Registry:{}
Registry:{}
Registry:{}
Registry:{}
Registry:{}
Registry:{}
Registry:{}
Registry:{}
Registry:{}
Registry:{}
Registry:{}
Registry:{}
Registry:{'num_classes': 5, 'in_channels': 256, 'feat_channels': 256, 'train_cfg': None, 'test_cfg': {'score_thr': 0.01, 'nms': {'type': 'nms', 'iou_threshold': 0.65}}}
Registry:{'use_sigmoid': True, 'reduction': 'sum', 'loss_weight': 1.0}
Registry:{'mode': 'square', 'eps': 1e-16, 'reduction': 'sum', 'loss_weight': 5.0}
Registry:{'use_sigmoid': True, 'reduction': 'sum', 'loss_weight': 1.0}
Registry:{'reduction': 'sum', 'loss_weight': 1.0}
Registry:{}
Registry:{}
Registry:{}
Registry:{}
Registry:{}
Registry:{}
Registry:{}
Registry:{}
Registry:{}
Registry:{}
Registry:{}
Registry:{}
load checkpoint from local path: D:\static\work_dirs\bcccd9e0-41a1-408d-9dfa-f4e634e9608c\best_bbox_mAP_epoch_149.pth
The model and loaded state dict do not match exactly

unexpected key in source state_dict: ema_backbone_stem_conv_conv_weight, ema_backbone_stem_conv_bn_weight, ema_backbone_stem_conv_bn_bias, ema_backbone_stem_conv_bn_running_mean, ema_backbone_stem_conv_bn_running_var, ema_backbone_stem_conv_bn_num_batches_tracked, ema_backbone_stage1_0_conv_weight, ema_backbone_stage1_0_bn_weight, ema_backbone_stage1_0_bn_bias, ema_backbone_stage1_0_bn_running_mean, ema_backbone_stage1
_0_bn_running_var, ema_backbone_stage1_0_bn_num_batches_tracked, ema_backbone_stage1_1_main_conv_conv_weight, ema_backbone_stage1_1_main_conv_bn_weight, ema_backbone_stage1_1_main_conv_bn_bias, ema_backbone_stage1_1_main_conv_bn_running_mean, ema_backbone_stage1_1_main_conv_bn_running_var, ema_backbone_stage1_1_main_conv_bn_num_batches_tracked, ema_backbone_stage1_1_short_conv_conv_weight, ema_backbone_stage1_1_short_c
onv_bn_weight, ema_backbone_stage1_1_short_conv_bn_bias, ema_backbone_stage1_1_short_conv_bn_running_mean, ema_backbone_stage1_1_short_conv_bn_running_var, ema_backbone_stage1_1_short_conv_bn_num_batches_tracked, ema_backbone_stage1_1_final_conv_conv_weight, ema_backbone_stage1_1_final_conv_bn_weight, ema_backbone_stage1_1_final_conv_bn_bias, ema_backbone_stage1_1_final_conv_bn_running_mean, ema_backbone_stage1_1_final
_conv_bn_running_var, ema_backbone_stage1_1_final_conv_bn_num_batches_tracked, ema_backbone_stage1_1_blocks_0_conv1_conv_weight, ema_backbone_stage1_1_blocks_0_conv1_bn_weight, ema_backbone_stage1_1_blocks_0_conv1_bn_bias, ema_backbone_stage1_1_blocks_0_conv1_bn_running_mean, ema_backbone_stage1_1_blocks_0_conv1_bn_running_var, ema_backbone_stage1_1_blocks_0_conv1_bn_num_batches_tracked, ema_backbone_stage1_1_blocks_0_
conv2_conv_weight, ema_backbone_stage1_1_blocks_0_conv2_bn_weight, ema_backbone_stage1_1_blocks_0_conv2_bn_bias, ema_backbone_stage1_1_blocks_0_conv2_bn_running_mean, ema_backbone_stage1_1_blocks_0_conv2_bn_running_var, ema_backbone_stage1_1_blocks_0_conv2_bn_num_batches_tracked, ema_backbone_stage1_1_blocks_1_conv1_conv_weight, ema_backbone_stage1_1_blocks_1_conv1_bn_weight, ema_backbone_stage1_1_blocks_1_conv1_bn_bia
s, ema_backbone_stage1_1_blocks_1_conv1_bn_running_mean, ema_backbone_stage1_1_blocks_1_conv1_bn_running_var, ema_backbone_stage1_1_blocks_1_conv1_bn_num_batches_tracked, ema_backbone_stage1_1_blocks_1_conv2_conv_weight, ema_backbone_stage1_1_blocks_1_conv2_bn_weight, ema_backbone_stage1_1_blocks_1_conv2_bn_bias, ema_backbone_stage1_1_blocks_1_conv2_bn_running_mean, ema_backbone_stage1_1_blocks_1_conv2_bn_running_var, 
ema_backbone_stage1_1_blocks_1_conv2_bn_num_batches_tracked, ema_backbone_stage1_1_blocks_2_conv1_conv_weight, ema_backbone_stage1_1_blocks_2_conv1_bn_weight, ema_backbone_stage1_1_blocks_2_conv1_bn_bias, ema_backbone_stage1_1_blocks_2_conv1_bn_running_mean, ema_backbone_stage1_1_blocks_2_conv1_bn_running_var, ema_backbone_stage1_1_blocks_2_conv1_bn_num_batches_tracked, ema_backbone_stage1_1_blocks_2_conv2_conv_weight,
 ema_backbone_stage1_1_blocks_2_conv2_bn_weight, ema_backbone_stage1_1_blocks_2_conv2_bn_bias, ema_backbone_stage1_1_blocks_2_conv2_bn_running_mean, ema_backbone_stage1_1_blocks_2_conv2_bn_running_var, ema_backbone_stage1_1_blocks_2_conv2_bn_num_batches_tracked, ema_backbone_stage2_0_conv_weight, ema_backbone_stage2_0_bn_weight, ema_backbone_stage2_0_bn_bias, ema_backbone_stage2_0_bn_running_mean, ema_backbone_stage2_0
_bn_running_var, ema_backbone_stage2_0_bn_num_batches_tracked, ema_backbone_stage2_1_main_conv_conv_weight, ema_backbone_stage2_1_main_conv_bn_weight, ema_backbone_stage2_1_main_conv_bn_bias, ema_backbone_stage2_1_main_conv_bn_running_mean, ema_backbone_stage2_1_main_conv_bn_running_var, ema_backbone_stage2_1_main_conv_bn_num_batches_tracked, ema_backbone_stage2_1_short_conv_conv_weight, ema_backbone_stage2_1_short_con
v_bn_weight, ema_backbone_stage2_1_short_conv_bn_bias, ema_backbone_stage2_1_short_conv_bn_running_mean, ema_backbone_stage2_1_short_conv_bn_running_var, ema_backbone_stage2_1_short_conv_bn_num_batches_tracked, ema_backbone_stage2_1_final_conv_conv_weight, ema_backbone_stage2_1_final_conv_bn_weight, ema_backbone_stage2_1_final_conv_bn_bias, ema_backbone_stage2_1_final_conv_bn_running_mean, ema_backbone_stage2_1_final_c
onv_bn_running_var, ema_backbone_stage2_1_final_conv_bn_num_batches_tracked, ema_backbone_stage2_1_blocks_0_conv1_conv_weight, ema_backbone_stage2_1_blocks_0_conv1_bn_weight, ema_backbone_stage2_1_blocks_0_conv1_bn_bias, ema_backbone_stage2_1_blocks_0_conv1_bn_running_mean, ema_backbone_stage2_1_blocks_0_conv1_bn_running_var, ema_backbone_stage2_1_blocks_0_conv1_bn_num_batches_tracked, ema_backbone_stage2_1_blocks_0_co
nv2_conv_weight, ema_backbone_stage2_1_blocks_0_conv2_bn_weight, ema_backbone_stage2_1_blocks_0_conv2_bn_bias, ema_backbone_stage2_1_blocks_0_conv2_bn_running_mean, ema_backbone_stage2_1_blocks_0_conv2_bn_running_var, ema_backbone_stage2_1_blocks_0_conv2_bn_num_batches_tracked, ema_backbone_stage2_1_blocks_1_conv1_conv_weight, ema_backbone_stage2_1_blocks_1_conv1_bn_weight, ema_backbone_stage2_1_blocks_1_conv1_bn_bias,
 ema_backbone_stage2_1_blocks_1_conv1_bn_running_mean, ema_backbone_stage2_1_blocks_1_conv1_bn_running_var, ema_backbone_stage2_1_blocks_1_conv1_bn_num_batches_tracked, ema_backbone_stage2_1_blocks_1_conv2_conv_weight, ema_backbone_stage2_1_blocks_1_conv2_bn_weight, ema_backbone_stage2_1_blocks_1_conv2_bn_bias, ema_backbone_stage2_1_blocks_1_conv2_bn_running_mean, ema_backbone_stage2_1_blocks_1_conv2_bn_running_var, em
a_backbone_stage2_1_blocks_1_conv2_bn_num_batches_tracked, ema_backbone_stage2_1_blocks_2_conv1_conv_weight, ema_backbone_stage2_1_blocks_2_conv1_bn_weight, ema_backbone_stage2_1_blocks_2_conv1_bn_bias, ema_backbone_stage2_1_blocks_2_conv1_bn_running_mean, ema_backbone_stage2_1_blocks_2_conv1_bn_running_var, ema_backbone_stage2_1_blocks_2_conv1_bn_num_batches_tracked, ema_backbone_stage2_1_blocks_2_conv2_conv_weight, e
ma_backbone_stage2_1_blocks_2_conv2_bn_weight, ema_backbone_stage2_1_blocks_2_conv2_bn_bias, ema_backbone_stage2_1_blocks_2_conv2_bn_running_mean, ema_backbone_stage2_1_blocks_2_conv2_bn_running_var, ema_backbone_stage2_1_blocks_2_conv2_bn_num_batches_tracked, ema_backbone_stage2_1_blocks_3_conv1_conv_weight, ema_backbone_stage2_1_blocks_3_conv1_bn_weight, ema_backbone_stage2_1_blocks_3_conv1_bn_bias, ema_backbone_stag
e2_1_blocks_3_conv1_bn_running_mean, ema_backbone_stage2_1_blocks_3_conv1_bn_running_var, ema_backbone_stage2_1_blocks_3_conv1_bn_num_batches_tracked, ema_backbone_stage2_1_blocks_3_conv2_conv_weight, ema_backbone_stage2_1_blocks_3_conv2_bn_weight, ema_backbone_stage2_1_blocks_3_conv2_bn_bias, ema_backbone_stage2_1_blocks_3_conv2_bn_running_mean, ema_backbone_stage2_1_blocks_3_conv2_bn_running_var, ema_backbone_stage2_
1_blocks_3_conv2_bn_num_batches_tracked, ema_backbone_stage2_1_blocks_4_conv1_conv_weight, ema_backbone_stage2_1_blocks_4_conv1_bn_weight, ema_backbone_stage2_1_blocks_4_conv1_bn_bias, ema_backbone_stage2_1_blocks_4_conv1_bn_running_mean, ema_backbone_stage2_1_blocks_4_conv1_bn_running_var, ema_backbone_stage2_1_blocks_4_conv1_bn_num_batches_tracked, ema_backbone_stage2_1_blocks_4_conv2_conv_weight, ema_backbone_stage2
_1_blocks_4_conv2_bn_weight, ema_backbone_stage2_1_blocks_4_conv2_bn_bias, ema_backbone_stage2_1_blocks_4_conv2_bn_running_mean, ema_backbone_stage2_1_blocks_4_conv2_bn_running_var, ema_backbone_stage2_1_blocks_4_conv2_bn_num_batches_tracked, ema_backbone_stage2_1_blocks_5_conv1_conv_weight, ema_backbone_stage2_1_blocks_5_conv1_bn_weight, ema_backbone_stage2_1_blocks_5_conv1_bn_bias, ema_backbone_stage2_1_blocks_5_conv
1_bn_running_mean, ema_backbone_stage2_1_blocks_5_conv1_bn_running_var, ema_backbone_stage2_1_blocks_5_conv1_bn_num_batches_tracked, ema_backbone_stage2_1_blocks_5_conv2_conv_weight, ema_backbone_stage2_1_blocks_5_conv2_bn_weight, ema_backbone_stage2_1_blocks_5_conv2_bn_bias, ema_backbone_stage2_1_blocks_5_conv2_bn_running_mean, ema_backbone_stage2_1_blocks_5_conv2_bn_running_var, ema_backbone_stage2_1_blocks_5_conv2_b
n_num_batches_tracked, ema_backbone_stage2_1_blocks_6_conv1_conv_weight, ema_backbone_stage2_1_blocks_6_conv1_bn_weight, ema_backbone_stage2_1_blocks_6_conv1_bn_bias, ema_backbone_stage2_1_blocks_6_conv1_bn_running_mean, ema_backbone_stage2_1_blocks_6_conv1_bn_running_var, ema_backbone_stage2_1_blocks_6_conv1_bn_num_batches_tracked, ema_backbone_stage2_1_blocks_6_conv2_conv_weight, ema_backbone_stage2_1_blocks_6_conv2_
bn_weight, ema_backbone_stage2_1_blocks_6_conv2_bn_bias, ema_backbone_stage2_1_blocks_6_conv2_bn_running_mean, ema_backbone_stage2_1_blocks_6_conv2_bn_running_var, ema_backbone_stage2_1_blocks_6_conv2_bn_num_batches_tracked, ema_backbone_stage2_1_blocks_7_conv1_conv_weight, ema_backbone_stage2_1_blocks_7_conv1_bn_weight, ema_backbone_stage2_1_blocks_7_conv1_bn_bias, ema_backbone_stage2_1_blocks_7_conv1_bn_running_mean,
 ema_backbone_stage2_1_blocks_7_conv1_bn_running_var, ema_backbone_stage2_1_blocks_7_conv1_bn_num_batches_tracked, ema_backbone_stage2_1_blocks_7_conv2_conv_weight, ema_backbone_stage2_1_blocks_7_conv2_bn_weight, ema_backbone_stage2_1_blocks_7_conv2_bn_bias, ema_backbone_stage2_1_blocks_7_conv2_bn_running_mean, ema_backbone_stage2_1_blocks_7_conv2_bn_running_var, ema_backbone_stage2_1_blocks_7_conv2_bn_num_batches_trac
ked, ema_backbone_stage2_1_blocks_8_conv1_conv_weight, ema_backbone_stage2_1_blocks_8_conv1_bn_weight, ema_backbone_stage2_1_blocks_8_conv1_bn_bias, ema_backbone_stage2_1_blocks_8_conv1_bn_running_mean, ema_backbone_stage2_1_blocks_8_conv1_bn_running_var, ema_backbone_stage2_1_blocks_8_conv1_bn_num_batches_tracked, ema_backbone_stage2_1_blocks_8_conv2_conv_weight, ema_backbone_stage2_1_blocks_8_conv2_bn_weight, ema_bac
kbone_stage2_1_blocks_8_conv2_bn_bias, ema_backbone_stage2_1_blocks_8_conv2_bn_running_mean, ema_backbone_stage2_1_blocks_8_conv2_bn_running_var, ema_backbone_stage2_1_blocks_8_conv2_bn_num_batches_tracked, ema_backbone_stage3_0_conv_weight, ema_backbone_stage3_0_bn_weight, ema_backbone_stage3_0_bn_bias, ema_backbone_stage3_0_bn_running_mean, ema_backbone_stage3_0_bn_running_var, ema_backbone_stage3_0_bn_num_batches_tr
acked, ema_backbone_stage3_1_main_conv_conv_weight, ema_backbone_stage3_1_main_conv_bn_weight, ema_backbone_stage3_1_main_conv_bn_bias, ema_backbone_stage3_1_main_conv_bn_running_mean, ema_backbone_stage3_1_main_conv_bn_running_var, ema_backbone_stage3_1_main_conv_bn_num_batches_tracked, ema_backbone_stage3_1_short_conv_conv_weight, ema_backbone_stage3_1_short_conv_bn_weight, ema_backbone_stage3_1_short_conv_bn_bias, e
ma_backbone_stage3_1_short_conv_bn_running_mean, ema_backbone_stage3_1_short_conv_bn_running_var, ema_backbone_stage3_1_short_conv_bn_num_batches_tracked, ema_backbone_stage3_1_final_conv_conv_weight, ema_backbone_stage3_1_final_conv_bn_weight, ema_backbone_stage3_1_final_conv_bn_bias, ema_backbone_stage3_1_final_conv_bn_running_mean, ema_backbone_stage3_1_final_conv_bn_running_var, ema_backbone_stage3_1_final_conv_bn_
num_batches_tracked, ema_backbone_stage3_1_blocks_0_conv1_conv_weight, ema_backbone_stage3_1_blocks_0_conv1_bn_weight, ema_backbone_stage3_1_blocks_0_conv1_bn_bias, ema_backbone_stage3_1_blocks_0_conv1_bn_running_mean, ema_backbone_stage3_1_blocks_0_conv1_bn_running_var, ema_backbone_stage3_1_blocks_0_conv1_bn_num_batches_tracked, ema_backbone_stage3_1_blocks_0_conv2_conv_weight, ema_backbone_stage3_1_blocks_0_conv2_bn
_weight, ema_backbone_stage3_1_blocks_0_conv2_bn_bias, ema_backbone_stage3_1_blocks_0_conv2_bn_running_mean, ema_backbone_stage3_1_blocks_0_conv2_bn_running_var, ema_backbone_stage3_1_blocks_0_conv2_bn_num_batches_tracked, ema_backbone_stage3_1_blocks_1_conv1_conv_weight, ema_backbone_stage3_1_blocks_1_conv1_bn_weight, ema_backbone_stage3_1_blocks_1_conv1_bn_bias, ema_backbone_stage3_1_blocks_1_conv1_bn_running_mean, e
ma_backbone_stage3_1_blocks_1_conv1_bn_running_var, ema_backbone_stage3_1_blocks_1_conv1_bn_num_batches_tracked, ema_backbone_stage3_1_blocks_1_conv2_conv_weight, ema_backbone_stage3_1_blocks_1_conv2_bn_weight, ema_backbone_stage3_1_blocks_1_conv2_bn_bias, ema_backbone_stage3_1_blocks_1_conv2_bn_running_mean, ema_backbone_stage3_1_blocks_1_conv2_bn_running_var, ema_backbone_stage3_1_blocks_1_conv2_bn_num_batches_tracke
d, ema_backbone_stage3_1_blocks_2_conv1_conv_weight, ema_backbone_stage3_1_blocks_2_conv1_bn_weight, ema_backbone_stage3_1_blocks_2_conv1_bn_bias, ema_backbone_stage3_1_blocks_2_conv1_bn_running_mean, ema_backbone_stage3_1_blocks_2_conv1_bn_running_var, ema_backbone_stage3_1_blocks_2_conv1_bn_num_batches_tracked, ema_backbone_stage3_1_blocks_2_conv2_conv_weight, ema_backbone_stage3_1_blocks_2_conv2_bn_weight, ema_backb
one_stage3_1_blocks_2_conv2_bn_bias, ema_backbone_stage3_1_blocks_2_conv2_bn_running_mean, ema_backbone_stage3_1_blocks_2_conv2_bn_running_var, ema_backbone_stage3_1_blocks_2_conv2_bn_num_batches_tracked, ema_backbone_stage3_1_blocks_3_conv1_conv_weight, ema_backbone_stage3_1_blocks_3_conv1_bn_weight, ema_backbone_stage3_1_blocks_3_conv1_bn_bias, ema_backbone_stage3_1_blocks_3_conv1_bn_running_mean, ema_backbone_stage3
_1_blocks_3_conv1_bn_running_var, ema_backbone_stage3_1_blocks_3_conv1_bn_num_batches_tracked, ema_backbone_stage3_1_blocks_3_conv2_conv_weight, ema_backbone_stage3_1_blocks_3_conv2_bn_weight, ema_backbone_stage3_1_blocks_3_conv2_bn_bias, ema_backbone_stage3_1_blocks_3_conv2_bn_running_mean, ema_backbone_stage3_1_blocks_3_conv2_bn_running_var, ema_backbone_stage3_1_blocks_3_conv2_bn_num_batches_tracked, ema_backbone_st
age3_1_blocks_4_conv1_conv_weight, ema_backbone_stage3_1_blocks_4_conv1_bn_weight, ema_backbone_stage3_1_blocks_4_conv1_bn_bias, ema_backbone_stage3_1_blocks_4_conv1_bn_running_mean, ema_backbone_stage3_1_blocks_4_conv1_bn_running_var, ema_backbone_stage3_1_blocks_4_conv1_bn_num_batches_tracked, ema_backbone_stage3_1_blocks_4_conv2_conv_weight, ema_backbone_stage3_1_blocks_4_conv2_bn_weight, ema_backbone_stage3_1_block
s_4_conv2_bn_bias, ema_backbone_stage3_1_blocks_4_conv2_bn_running_mean, ema_backbone_stage3_1_blocks_4_conv2_bn_running_var, ema_backbone_stage3_1_blocks_4_conv2_bn_num_batches_tracked, ema_backbone_stage3_1_blocks_5_conv1_conv_weight, ema_backbone_stage3_1_blocks_5_conv1_bn_weight, ema_backbone_stage3_1_blocks_5_conv1_bn_bias, ema_backbone_stage3_1_blocks_5_conv1_bn_running_mean, ema_backbone_stage3_1_blocks_5_conv1_
bn_running_var, ema_backbone_stage3_1_blocks_5_conv1_bn_num_batches_tracked, ema_backbone_stage3_1_blocks_5_conv2_conv_weight, ema_backbone_stage3_1_blocks_5_conv2_bn_weight, ema_backbone_stage3_1_blocks_5_conv2_bn_bias, ema_backbone_stage3_1_blocks_5_conv2_bn_running_mean, ema_backbone_stage3_1_blocks_5_conv2_bn_running_var, ema_backbone_stage3_1_blocks_5_conv2_bn_num_batches_tracked, ema_backbone_stage3_1_blocks_6_co
nv1_conv_weight, ema_backbone_stage3_1_blocks_6_conv1_bn_weight, ema_backbone_stage3_1_blocks_6_conv1_bn_bias, ema_backbone_stage3_1_blocks_6_conv1_bn_running_mean, ema_backbone_stage3_1_blocks_6_conv1_bn_running_var, ema_backbone_stage3_1_blocks_6_conv1_bn_num_batches_tracked, ema_backbone_stage3_1_blocks_6_conv2_conv_weight, ema_backbone_stage3_1_blocks_6_conv2_bn_weight, ema_backbone_stage3_1_blocks_6_conv2_bn_bias,
 ema_backbone_stage3_1_blocks_6_conv2_bn_running_mean, ema_backbone_stage3_1_blocks_6_conv2_bn_running_var, ema_backbone_stage3_1_blocks_6_conv2_bn_num_batches_tracked, ema_backbone_stage3_1_blocks_7_conv1_conv_weight, ema_backbone_stage3_1_blocks_7_conv1_bn_weight, ema_backbone_stage3_1_blocks_7_conv1_bn_bias, ema_backbone_stage3_1_blocks_7_conv1_bn_running_mean, ema_backbone_stage3_1_blocks_7_conv1_bn_running_var, em
a_backbone_stage3_1_blocks_7_conv1_bn_num_batches_tracked, ema_backbone_stage3_1_blocks_7_conv2_conv_weight, ema_backbone_stage3_1_blocks_7_conv2_bn_weight, ema_backbone_stage3_1_blocks_7_conv2_bn_bias, ema_backbone_stage3_1_blocks_7_conv2_bn_running_mean, ema_backbone_stage3_1_blocks_7_conv2_bn_running_var, ema_backbone_stage3_1_blocks_7_conv2_bn_num_batches_tracked, ema_backbone_stage3_1_blocks_8_conv1_conv_weight, e
ma_backbone_stage3_1_blocks_8_conv1_bn_weight, ema_backbone_stage3_1_blocks_8_conv1_bn_bias, ema_backbone_stage3_1_blocks_8_conv1_bn_running_mean, ema_backbone_stage3_1_blocks_8_conv1_bn_running_var, ema_backbone_stage3_1_blocks_8_conv1_bn_num_batches_tracked, ema_backbone_stage3_1_blocks_8_conv2_conv_weight, ema_backbone_stage3_1_blocks_8_conv2_bn_weight, ema_backbone_stage3_1_blocks_8_conv2_bn_bias, ema_backbone_stag
e3_1_blocks_8_conv2_bn_running_mean, ema_backbone_stage3_1_blocks_8_conv2_bn_running_var, ema_backbone_stage3_1_blocks_8_conv2_bn_num_batches_tracked, ema_backbone_stage4_0_conv_weight, ema_backbone_stage4_0_bn_weight, ema_backbone_stage4_0_bn_bias, ema_backbone_stage4_0_bn_running_mean, ema_backbone_stage4_0_bn_running_var, ema_backbone_stage4_0_bn_num_batches_tracked, ema_backbone_stage4_1_conv1_conv_weight, ema_back
bone_stage4_1_conv1_bn_weight, ema_backbone_stage4_1_conv1_bn_bias, ema_backbone_stage4_1_conv1_bn_running_mean, ema_backbone_stage4_1_conv1_bn_running_var, ema_backbone_stage4_1_conv1_bn_num_batches_tracked, ema_backbone_stage4_1_conv2_conv_weight, ema_backbone_stage4_1_conv2_bn_weight, ema_backbone_stage4_1_conv2_bn_bias, ema_backbone_stage4_1_conv2_bn_running_mean, ema_backbone_stage4_1_conv2_bn_running_var, ema_bac
kbone_stage4_1_conv2_bn_num_batches_tracked, ema_backbone_stage4_2_main_conv_conv_weight, ema_backbone_stage4_2_main_conv_bn_weight, ema_backbone_stage4_2_main_conv_bn_bias, ema_backbone_stage4_2_main_conv_bn_running_mean, ema_backbone_stage4_2_main_conv_bn_running_var, ema_backbone_stage4_2_main_conv_bn_num_batches_tracked, ema_backbone_stage4_2_short_conv_conv_weight, ema_backbone_stage4_2_short_conv_bn_weight, ema_b
ackbone_stage4_2_short_conv_bn_bias, ema_backbone_stage4_2_short_conv_bn_running_mean, ema_backbone_stage4_2_short_conv_bn_running_var, ema_backbone_stage4_2_short_conv_bn_num_batches_tracked, ema_backbone_stage4_2_final_conv_conv_weight, ema_backbone_stage4_2_final_conv_bn_weight, ema_backbone_stage4_2_final_conv_bn_bias, ema_backbone_stage4_2_final_conv_bn_running_mean, ema_backbone_stage4_2_final_conv_bn_running_var
, ema_backbone_stage4_2_final_conv_bn_num_batches_tracked, ema_backbone_stage4_2_blocks_0_conv1_conv_weight, ema_backbone_stage4_2_blocks_0_conv1_bn_weight, ema_backbone_stage4_2_blocks_0_conv1_bn_bias, ema_backbone_stage4_2_blocks_0_conv1_bn_running_mean, ema_backbone_stage4_2_blocks_0_conv1_bn_running_var, ema_backbone_stage4_2_blocks_0_conv1_bn_num_batches_tracked, ema_backbone_stage4_2_blocks_0_conv2_conv_weight, e
ma_backbone_stage4_2_blocks_0_conv2_bn_weight, ema_backbone_stage4_2_blocks_0_conv2_bn_bias, ema_backbone_stage4_2_blocks_0_conv2_bn_running_mean, ema_backbone_stage4_2_blocks_0_conv2_bn_running_var, ema_backbone_stage4_2_blocks_0_conv2_bn_num_batches_tracked, ema_backbone_stage4_2_blocks_1_conv1_conv_weight, ema_backbone_stage4_2_blocks_1_conv1_bn_weight, ema_backbone_stage4_2_blocks_1_conv1_bn_bias, ema_backbone_stag
e4_2_blocks_1_conv1_bn_running_mean, ema_backbone_stage4_2_blocks_1_conv1_bn_running_var, ema_backbone_stage4_2_blocks_1_conv1_bn_num_batches_tracked, ema_backbone_stage4_2_blocks_1_conv2_conv_weight, ema_backbone_stage4_2_blocks_1_conv2_bn_weight, ema_backbone_stage4_2_blocks_1_conv2_bn_bias, ema_backbone_stage4_2_blocks_1_conv2_bn_running_mean, ema_backbone_stage4_2_blocks_1_conv2_bn_running_var, ema_backbone_stage4_
2_blocks_1_conv2_bn_num_batches_tracked, ema_backbone_stage4_2_blocks_2_conv1_conv_weight, ema_backbone_stage4_2_blocks_2_conv1_bn_weight, ema_backbone_stage4_2_blocks_2_conv1_bn_bias, ema_backbone_stage4_2_blocks_2_conv1_bn_running_mean, ema_backbone_stage4_2_blocks_2_conv1_bn_running_var, ema_backbone_stage4_2_blocks_2_conv1_bn_num_batches_tracked, ema_backbone_stage4_2_blocks_2_conv2_conv_weight, ema_backbone_stage4
_2_blocks_2_conv2_bn_weight, ema_backbone_stage4_2_blocks_2_conv2_bn_bias, ema_backbone_stage4_2_blocks_2_conv2_bn_running_mean, ema_backbone_stage4_2_blocks_2_conv2_bn_running_var, ema_backbone_stage4_2_blocks_2_conv2_bn_num_batches_tracked, ema_neck_reduce_layers_0_conv_weight, ema_neck_reduce_layers_0_bn_weight, ema_neck_reduce_layers_0_bn_bias, ema_neck_reduce_layers_0_bn_running_mean, ema_neck_reduce_layers_0_bn_r
unning_var, ema_neck_reduce_layers_0_bn_num_batches_tracked, ema_neck_reduce_layers_1_conv_weight, ema_neck_reduce_layers_1_bn_weight, ema_neck_reduce_layers_1_bn_bias, ema_neck_reduce_layers_1_bn_running_mean, ema_neck_reduce_layers_1_bn_running_var, ema_neck_reduce_layers_1_bn_num_batches_tracked, ema_neck_top_down_blocks_0_main_conv_conv_weight, ema_neck_top_down_blocks_0_main_conv_bn_weight, ema_neck_top_down_block
s_0_main_conv_bn_bias, ema_neck_top_down_blocks_0_main_conv_bn_running_mean, ema_neck_top_down_blocks_0_main_conv_bn_running_var, ema_neck_top_down_blocks_0_main_conv_bn_num_batches_tracked, ema_neck_top_down_blocks_0_short_conv_conv_weight, ema_neck_top_down_blocks_0_short_conv_bn_weight, ema_neck_top_down_blocks_0_short_conv_bn_bias, ema_neck_top_down_blocks_0_short_conv_bn_running_mean, ema_neck_top_down_blocks_0_sh
ort_conv_bn_running_var, ema_neck_top_down_blocks_0_short_conv_bn_num_batches_tracked, ema_neck_top_down_blocks_0_final_conv_conv_weight, ema_neck_top_down_blocks_0_final_conv_bn_weight, ema_neck_top_down_blocks_0_final_conv_bn_bias, ema_neck_top_down_blocks_0_final_conv_bn_running_mean, ema_neck_top_down_blocks_0_final_conv_bn_running_var, ema_neck_top_down_blocks_0_final_conv_bn_num_batches_tracked, ema_neck_top_down
_blocks_0_blocks_0_conv1_conv_weight, ema_neck_top_down_blocks_0_blocks_0_conv1_bn_weight, ema_neck_top_down_blocks_0_blocks_0_conv1_bn_bias, ema_neck_top_down_blocks_0_blocks_0_conv1_bn_running_mean, ema_neck_top_down_blocks_0_blocks_0_conv1_bn_running_var, ema_neck_top_down_blocks_0_blocks_0_conv1_bn_num_batches_tracked, ema_neck_top_down_blocks_0_blocks_0_conv2_conv_weight, ema_neck_top_down_blocks_0_blocks_0_conv2_
bn_weight, ema_neck_top_down_blocks_0_blocks_0_conv2_bn_bias, ema_neck_top_down_blocks_0_blocks_0_conv2_bn_running_mean, ema_neck_top_down_blocks_0_blocks_0_conv2_bn_running_var, ema_neck_top_down_blocks_0_blocks_0_conv2_bn_num_batches_tracked, ema_neck_top_down_blocks_0_blocks_1_conv1_conv_weight, ema_neck_top_down_blocks_0_blocks_1_conv1_bn_weight, ema_neck_top_down_blocks_0_blocks_1_conv1_bn_bias, ema_neck_top_down_
blocks_0_blocks_1_conv1_bn_running_mean, ema_neck_top_down_blocks_0_blocks_1_conv1_bn_running_var, ema_neck_top_down_blocks_0_blocks_1_conv1_bn_num_batches_tracked, ema_neck_top_down_blocks_0_blocks_1_conv2_conv_weight, ema_neck_top_down_blocks_0_blocks_1_conv2_bn_weight, ema_neck_top_down_blocks_0_blocks_1_conv2_bn_bias, ema_neck_top_down_blocks_0_blocks_1_conv2_bn_running_mean, ema_neck_top_down_blocks_0_blocks_1_con
v2_bn_running_var, ema_neck_top_down_blocks_0_blocks_1_conv2_bn_num_batches_tracked, ema_neck_top_down_blocks_0_blocks_2_conv1_conv_weight, ema_neck_top_down_blocks_0_blocks_2_conv1_bn_weight, ema_neck_top_down_blocks_0_blocks_2_conv1_bn_bias, ema_neck_top_down_blocks_0_blocks_2_conv1_bn_running_mean, ema_neck_top_down_blocks_0_blocks_2_conv1_bn_running_var, ema_neck_top_down_blocks_0_blocks_2_conv1_bn_num_batches_trac
ked, ema_neck_top_down_blocks_0_blocks_2_conv2_conv_weight, ema_neck_top_down_blocks_0_blocks_2_conv2_bn_weight, ema_neck_top_down_blocks_0_blocks_2_conv2_bn_bias, ema_neck_top_down_blocks_0_blocks_2_conv2_bn_running_mean, ema_neck_top_down_blocks_0_blocks_2_conv2_bn_running_var, ema_neck_top_down_blocks_0_blocks_2_conv2_bn_num_batches_tracked, ema_neck_top_down_blocks_1_main_conv_conv_weight, ema_neck_top_down_blocks_
1_main_conv_bn_weight, ema_neck_top_down_blocks_1_main_conv_bn_bias, ema_neck_top_down_blocks_1_main_conv_bn_running_mean, ema_neck_top_down_blocks_1_main_conv_bn_running_var, ema_neck_top_down_blocks_1_main_conv_bn_num_batches_tracked, ema_neck_top_down_blocks_1_short_conv_conv_weight, ema_neck_top_down_blocks_1_short_conv_bn_weight, ema_neck_top_down_blocks_1_short_conv_bn_bias, ema_neck_top_down_blocks_1_short_conv_
bn_running_mean, ema_neck_top_down_blocks_1_short_conv_bn_running_var, ema_neck_top_down_blocks_1_short_conv_bn_num_batches_tracked, ema_neck_top_down_blocks_1_final_conv_conv_weight, ema_neck_top_down_blocks_1_final_conv_bn_weight, ema_neck_top_down_blocks_1_final_conv_bn_bias, ema_neck_top_down_blocks_1_final_conv_bn_running_mean, ema_neck_top_down_blocks_1_final_conv_bn_running_var, ema_neck_top_down_blocks_1_final_
conv_bn_num_batches_tracked, ema_neck_top_down_blocks_1_blocks_0_conv1_conv_weight, ema_neck_top_down_blocks_1_blocks_0_conv1_bn_weight, ema_neck_top_down_blocks_1_blocks_0_conv1_bn_bias, ema_neck_top_down_blocks_1_blocks_0_conv1_bn_running_mean, ema_neck_top_down_blocks_1_blocks_0_conv1_bn_running_var, ema_neck_top_down_blocks_1_blocks_0_conv1_bn_num_batches_tracked, ema_neck_top_down_blocks_1_blocks_0_conv2_conv_weig
ht, ema_neck_top_down_blocks_1_blocks_0_conv2_bn_weight, ema_neck_top_down_blocks_1_blocks_0_conv2_bn_bias, ema_neck_top_down_blocks_1_blocks_0_conv2_bn_running_mean, ema_neck_top_down_blocks_1_blocks_0_conv2_bn_running_var, ema_neck_top_down_blocks_1_blocks_0_conv2_bn_num_batches_tracked, ema_neck_top_down_blocks_1_blocks_1_conv1_conv_weight, ema_neck_top_down_blocks_1_blocks_1_conv1_bn_weight, ema_neck_top_down_block
s_1_blocks_1_conv1_bn_bias, ema_neck_top_down_blocks_1_blocks_1_conv1_bn_running_mean, ema_neck_top_down_blocks_1_blocks_1_conv1_bn_running_var, ema_neck_top_down_blocks_1_blocks_1_conv1_bn_num_batches_tracked, ema_neck_top_down_blocks_1_blocks_1_conv2_conv_weight, ema_neck_top_down_blocks_1_blocks_1_conv2_bn_weight, ema_neck_top_down_blocks_1_blocks_1_conv2_bn_bias, ema_neck_top_down_blocks_1_blocks_1_conv2_bn_running
_mean, ema_neck_top_down_blocks_1_blocks_1_conv2_bn_running_var, ema_neck_top_down_blocks_1_blocks_1_conv2_bn_num_batches_tracked, ema_neck_top_down_blocks_1_blocks_2_conv1_conv_weight, ema_neck_top_down_blocks_1_blocks_2_conv1_bn_weight, ema_neck_top_down_blocks_1_blocks_2_conv1_bn_bias, ema_neck_top_down_blocks_1_blocks_2_conv1_bn_running_mean, ema_neck_top_down_blocks_1_blocks_2_conv1_bn_running_var, ema_neck_top_do
wn_blocks_1_blocks_2_conv1_bn_num_batches_tracked, ema_neck_top_down_blocks_1_blocks_2_conv2_conv_weight, ema_neck_top_down_blocks_1_blocks_2_conv2_bn_weight, ema_neck_top_down_blocks_1_blocks_2_conv2_bn_bias, ema_neck_top_down_blocks_1_blocks_2_conv2_bn_running_mean, ema_neck_top_down_blocks_1_blocks_2_conv2_bn_running_var, ema_neck_top_down_blocks_1_blocks_2_conv2_bn_num_batches_tracked, ema_neck_downsamples_0_conv_w
eight, ema_neck_downsamples_0_bn_weight, ema_neck_downsamples_0_bn_bias, ema_neck_downsamples_0_bn_running_mean, ema_neck_downsamples_0_bn_running_var, ema_neck_downsamples_0_bn_num_batches_tracked, ema_neck_downsamples_1_conv_weight, ema_neck_downsamples_1_bn_weight, ema_neck_downsamples_1_bn_bias, ema_neck_downsamples_1_bn_running_mean, ema_neck_downsamples_1_bn_running_var, ema_neck_downsamples_1_bn_num_batches_trac
ked, ema_neck_bottom_up_blocks_0_main_conv_conv_weight, ema_neck_bottom_up_blocks_0_main_conv_bn_weight, ema_neck_bottom_up_blocks_0_main_conv_bn_bias, ema_neck_bottom_up_blocks_0_main_conv_bn_running_mean, ema_neck_bottom_up_blocks_0_main_conv_bn_running_var, ema_neck_bottom_up_blocks_0_main_conv_bn_num_batches_tracked, ema_neck_bottom_up_blocks_0_short_conv_conv_weight, ema_neck_bottom_up_blocks_0_short_conv_bn_weigh
t, ema_neck_bottom_up_blocks_0_short_conv_bn_bias, ema_neck_bottom_up_blocks_0_short_conv_bn_running_mean, ema_neck_bottom_up_blocks_0_short_conv_bn_running_var, ema_neck_bottom_up_blocks_0_short_conv_bn_num_batches_tracked, ema_neck_bottom_up_blocks_0_final_conv_conv_weight, ema_neck_bottom_up_blocks_0_final_conv_bn_weight, ema_neck_bottom_up_blocks_0_final_conv_bn_bias, ema_neck_bottom_up_blocks_0_final_conv_bn_runni
ng_mean, ema_neck_bottom_up_blocks_0_final_conv_bn_running_var, ema_neck_bottom_up_blocks_0_final_conv_bn_num_batches_tracked, ema_neck_bottom_up_blocks_0_blocks_0_conv1_conv_weight, ema_neck_bottom_up_blocks_0_blocks_0_conv1_bn_weight, ema_neck_bottom_up_blocks_0_blocks_0_conv1_bn_bias, ema_neck_bottom_up_blocks_0_blocks_0_conv1_bn_running_mean, ema_neck_bottom_up_blocks_0_blocks_0_conv1_bn_running_var, ema_neck_botto
m_up_blocks_0_blocks_0_conv1_bn_num_batches_tracked, ema_neck_bottom_up_blocks_0_blocks_0_conv2_conv_weight, ema_neck_bottom_up_blocks_0_blocks_0_conv2_bn_weight, ema_neck_bottom_up_blocks_0_blocks_0_conv2_bn_bias, ema_neck_bottom_up_blocks_0_blocks_0_conv2_bn_running_mean, ema_neck_bottom_up_blocks_0_blocks_0_conv2_bn_running_var, ema_neck_bottom_up_blocks_0_blocks_0_conv2_bn_num_batches_tracked, ema_neck_bottom_up_bl
ocks_0_blocks_1_conv1_conv_weight, ema_neck_bottom_up_blocks_0_blocks_1_conv1_bn_weight, ema_neck_bottom_up_blocks_0_blocks_1_conv1_bn_bias, ema_neck_bottom_up_blocks_0_blocks_1_conv1_bn_running_mean, ema_neck_bottom_up_blocks_0_blocks_1_conv1_bn_running_var, ema_neck_bottom_up_blocks_0_blocks_1_conv1_bn_num_batches_tracked, ema_neck_bottom_up_blocks_0_blocks_1_conv2_conv_weight, ema_neck_bottom_up_blocks_0_blocks_1_co
nv2_bn_weight, ema_neck_bottom_up_blocks_0_blocks_1_conv2_bn_bias, ema_neck_bottom_up_blocks_0_blocks_1_conv2_bn_running_mean, ema_neck_bottom_up_blocks_0_blocks_1_conv2_bn_running_var, ema_neck_bottom_up_blocks_0_blocks_1_conv2_bn_num_batches_tracked, ema_neck_bottom_up_blocks_0_blocks_2_conv1_conv_weight, ema_neck_bottom_up_blocks_0_blocks_2_conv1_bn_weight, ema_neck_bottom_up_blocks_0_blocks_2_conv1_bn_bias, ema_nec
k_bottom_up_blocks_0_blocks_2_conv1_bn_running_mean, ema_neck_bottom_up_blocks_0_blocks_2_conv1_bn_running_var, ema_neck_bottom_up_blocks_0_blocks_2_conv1_bn_num_batches_tracked, ema_neck_bottom_up_blocks_0_blocks_2_conv2_conv_weight, ema_neck_bottom_up_blocks_0_blocks_2_conv2_bn_weight, ema_neck_bottom_up_blocks_0_blocks_2_conv2_bn_bias, ema_neck_bottom_up_blocks_0_blocks_2_conv2_bn_running_mean, ema_neck_bottom_up_bl
ocks_0_blocks_2_conv2_bn_running_var, ema_neck_bottom_up_blocks_0_blocks_2_conv2_bn_num_batches_tracked, ema_neck_bottom_up_blocks_1_main_conv_conv_weight, ema_neck_bottom_up_blocks_1_main_conv_bn_weight, ema_neck_bottom_up_blocks_1_main_conv_bn_bias, ema_neck_bottom_up_blocks_1_main_conv_bn_running_mean, ema_neck_bottom_up_blocks_1_main_conv_bn_running_var, ema_neck_bottom_up_blocks_1_main_conv_bn_num_batches_tracked,
 ema_neck_bottom_up_blocks_1_short_conv_conv_weight, ema_neck_bottom_up_blocks_1_short_conv_bn_weight, ema_neck_bottom_up_blocks_1_short_conv_bn_bias, ema_neck_bottom_up_blocks_1_short_conv_bn_running_mean, ema_neck_bottom_up_blocks_1_short_conv_bn_running_var, ema_neck_bottom_up_blocks_1_short_conv_bn_num_batches_tracked, ema_neck_bottom_up_blocks_1_final_conv_conv_weight, ema_neck_bottom_up_blocks_1_final_conv_bn_wei
ght, ema_neck_bottom_up_blocks_1_final_conv_bn_bias, ema_neck_bottom_up_blocks_1_final_conv_bn_running_mean, ema_neck_bottom_up_blocks_1_final_conv_bn_running_var, ema_neck_bottom_up_blocks_1_final_conv_bn_num_batches_tracked, ema_neck_bottom_up_blocks_1_blocks_0_conv1_conv_weight, ema_neck_bottom_up_blocks_1_blocks_0_conv1_bn_weight, ema_neck_bottom_up_blocks_1_blocks_0_conv1_bn_bias, ema_neck_bottom_up_blocks_1_block
s_0_conv1_bn_running_mean, ema_neck_bottom_up_blocks_1_blocks_0_conv1_bn_running_var, ema_neck_bottom_up_blocks_1_blocks_0_conv1_bn_num_batches_tracked, ema_neck_bottom_up_blocks_1_blocks_0_conv2_conv_weight, ema_neck_bottom_up_blocks_1_blocks_0_conv2_bn_weight, ema_neck_bottom_up_blocks_1_blocks_0_conv2_bn_bias, ema_neck_bottom_up_blocks_1_blocks_0_conv2_bn_running_mean, ema_neck_bottom_up_blocks_1_blocks_0_conv2_bn_r
unning_var, ema_neck_bottom_up_blocks_1_blocks_0_conv2_bn_num_batches_tracked, ema_neck_bottom_up_blocks_1_blocks_1_conv1_conv_weight, ema_neck_bottom_up_blocks_1_blocks_1_conv1_bn_weight, ema_neck_bottom_up_blocks_1_blocks_1_conv1_bn_bias, ema_neck_bottom_up_blocks_1_blocks_1_conv1_bn_running_mean, ema_neck_bottom_up_blocks_1_blocks_1_conv1_bn_running_var, ema_neck_bottom_up_blocks_1_blocks_1_conv1_bn_num_batches_trac
ked, ema_neck_bottom_up_blocks_1_blocks_1_conv2_conv_weight, ema_neck_bottom_up_blocks_1_blocks_1_conv2_bn_weight, ema_neck_bottom_up_blocks_1_blocks_1_conv2_bn_bias, ema_neck_bottom_up_blocks_1_blocks_1_conv2_bn_running_mean, ema_neck_bottom_up_blocks_1_blocks_1_conv2_bn_running_var, ema_neck_bottom_up_blocks_1_blocks_1_conv2_bn_num_batches_tracked, ema_neck_bottom_up_blocks_1_blocks_2_conv1_conv_weight, ema_neck_bott
om_up_blocks_1_blocks_2_conv1_bn_weight, ema_neck_bottom_up_blocks_1_blocks_2_conv1_bn_bias, ema_neck_bottom_up_blocks_1_blocks_2_conv1_bn_running_mean, ema_neck_bottom_up_blocks_1_blocks_2_conv1_bn_running_var, ema_neck_bottom_up_blocks_1_blocks_2_conv1_bn_num_batches_tracked, ema_neck_bottom_up_blocks_1_blocks_2_conv2_conv_weight, ema_neck_bottom_up_blocks_1_blocks_2_conv2_bn_weight, ema_neck_bottom_up_blocks_1_block
s_2_conv2_bn_bias, ema_neck_bottom_up_blocks_1_blocks_2_conv2_bn_running_mean, ema_neck_bottom_up_blocks_1_blocks_2_conv2_bn_running_var, ema_neck_bottom_up_blocks_1_blocks_2_conv2_bn_num_batches_tracked, ema_neck_out_convs_0_conv_weight, ema_neck_out_convs_0_bn_weight, ema_neck_out_convs_0_bn_bias, ema_neck_out_convs_0_bn_running_mean, ema_neck_out_convs_0_bn_running_var, ema_neck_out_convs_0_bn_num_batches_tracked, e
ma_neck_out_convs_1_conv_weight, ema_neck_out_convs_1_bn_weight, ema_neck_out_convs_1_bn_bias, ema_neck_out_convs_1_bn_running_mean, ema_neck_out_convs_1_bn_running_var, ema_neck_out_convs_1_bn_num_batches_tracked, ema_neck_out_convs_2_conv_weight, ema_neck_out_convs_2_bn_weight, ema_neck_out_convs_2_bn_bias, ema_neck_out_convs_2_bn_running_mean, ema_neck_out_convs_2_bn_running_var, ema_neck_out_convs_2_bn_num_batches_
tracked, ema_bbox_head_multi_level_cls_convs_0_0_conv_weight, ema_bbox_head_multi_level_cls_convs_0_0_bn_weight, ema_bbox_head_multi_level_cls_convs_0_0_bn_bias, ema_bbox_head_multi_level_cls_convs_0_0_bn_running_mean, ema_bbox_head_multi_level_cls_convs_0_0_bn_running_var, ema_bbox_head_multi_level_cls_convs_0_0_bn_num_batches_tracked, ema_bbox_head_multi_level_cls_convs_0_1_conv_weight, ema_bbox_head_multi_level_cls_
convs_0_1_bn_weight, ema_bbox_head_multi_level_cls_convs_0_1_bn_bias, ema_bbox_head_multi_level_cls_convs_0_1_bn_running_mean, ema_bbox_head_multi_level_cls_convs_0_1_bn_running_var, ema_bbox_head_multi_level_cls_convs_0_1_bn_num_batches_tracked, ema_bbox_head_multi_level_cls_convs_1_0_conv_weight, ema_bbox_head_multi_level_cls_convs_1_0_bn_weight, ema_bbox_head_multi_level_cls_convs_1_0_bn_bias, ema_bbox_head_multi_le
vel_cls_convs_1_0_bn_running_mean, ema_bbox_head_multi_level_cls_convs_1_0_bn_running_var, ema_bbox_head_multi_level_cls_convs_1_0_bn_num_batches_tracked, ema_bbox_head_multi_level_cls_convs_1_1_conv_weight, ema_bbox_head_multi_level_cls_convs_1_1_bn_weight, ema_bbox_head_multi_level_cls_convs_1_1_bn_bias, ema_bbox_head_multi_level_cls_convs_1_1_bn_running_mean, ema_bbox_head_multi_level_cls_convs_1_1_bn_running_var, e
ma_bbox_head_multi_level_cls_convs_1_1_bn_num_batches_tracked, ema_bbox_head_multi_level_cls_convs_2_0_conv_weight, ema_bbox_head_multi_level_cls_convs_2_0_bn_weight, ema_bbox_head_multi_level_cls_convs_2_0_bn_bias, ema_bbox_head_multi_level_cls_convs_2_0_bn_running_mean, ema_bbox_head_multi_level_cls_convs_2_0_bn_running_var, ema_bbox_head_multi_level_cls_convs_2_0_bn_num_batches_tracked, ema_bbox_head_multi_level_cls
_convs_2_1_conv_weight, ema_bbox_head_multi_level_cls_convs_2_1_bn_weight, ema_bbox_head_multi_level_cls_convs_2_1_bn_bias, ema_bbox_head_multi_level_cls_convs_2_1_bn_running_mean, ema_bbox_head_multi_level_cls_convs_2_1_bn_running_var, ema_bbox_head_multi_level_cls_convs_2_1_bn_num_batches_tracked, ema_bbox_head_multi_level_reg_convs_0_0_conv_weight, ema_bbox_head_multi_level_reg_convs_0_0_bn_weight, ema_bbox_head_mul
ti_level_reg_convs_0_0_bn_bias, ema_bbox_head_multi_level_reg_convs_0_0_bn_running_mean, ema_bbox_head_multi_level_reg_convs_0_0_bn_running_var, ema_bbox_head_multi_level_reg_convs_0_0_bn_num_batches_tracked, ema_bbox_head_multi_level_reg_convs_0_1_conv_weight, ema_bbox_head_multi_level_reg_convs_0_1_bn_weight, ema_bbox_head_multi_level_reg_convs_0_1_bn_bias, ema_bbox_head_multi_level_reg_convs_0_1_bn_running_mean, ema
_bbox_head_multi_level_reg_convs_0_1_bn_running_var, ema_bbox_head_multi_level_reg_convs_0_1_bn_num_batches_tracked, ema_bbox_head_multi_level_reg_convs_1_0_conv_weight, ema_bbox_head_multi_level_reg_convs_1_0_bn_weight, ema_bbox_head_multi_level_reg_convs_1_0_bn_bias, ema_bbox_head_multi_level_reg_convs_1_0_bn_running_mean, ema_bbox_head_multi_level_reg_convs_1_0_bn_running_var, ema_bbox_head_multi_level_reg_convs_1_0
_bn_num_batches_tracked, ema_bbox_head_multi_level_reg_convs_1_1_conv_weight, ema_bbox_head_multi_level_reg_convs_1_1_bn_weight, ema_bbox_head_multi_level_reg_convs_1_1_bn_bias, ema_bbox_head_multi_level_reg_convs_1_1_bn_running_mean, ema_bbox_head_multi_level_reg_convs_1_1_bn_running_var, ema_bbox_head_multi_level_reg_convs_1_1_bn_num_batches_tracked, ema_bbox_head_multi_level_reg_convs_2_0_conv_weight, ema_bbox_head_
multi_level_reg_convs_2_0_bn_weight, ema_bbox_head_multi_level_reg_convs_2_0_bn_bias, ema_bbox_head_multi_level_reg_convs_2_0_bn_running_mean, ema_bbox_head_multi_level_reg_convs_2_0_bn_running_var, ema_bbox_head_multi_level_reg_convs_2_0_bn_num_batches_tracked, ema_bbox_head_multi_level_reg_convs_2_1_conv_weight, ema_bbox_head_multi_level_reg_convs_2_1_bn_weight, ema_bbox_head_multi_level_reg_convs_2_1_bn_bias, ema_bb
ox_head_multi_level_reg_convs_2_1_bn_running_mean, ema_bbox_head_multi_level_reg_convs_2_1_bn_running_var, ema_bbox_head_multi_level_reg_convs_2_1_bn_num_batches_tracked, ema_bbox_head_multi_level_conv_cls_0_weight, ema_bbox_head_multi_level_conv_cls_0_bias, ema_bbox_head_multi_level_conv_cls_1_weight, ema_bbox_head_multi_level_conv_cls_1_bias, ema_bbox_head_multi_level_conv_cls_2_weight, ema_bbox_head_multi_level_conv
_cls_2_bias, ema_bbox_head_multi_level_conv_reg_0_weight, ema_bbox_head_multi_level_conv_reg_0_bias, ema_bbox_head_multi_level_conv_reg_1_weight, ema_bbox_head_multi_level_conv_reg_1_bias, ema_bbox_head_multi_level_conv_reg_2_weight, ema_bbox_head_multi_level_conv_reg_2_bias, ema_bbox_head_multi_level_conv_obj_0_weight, ema_bbox_head_multi_level_conv_obj_0_bias, ema_bbox_head_multi_level_conv_obj_1_weight, ema_bbox_head_multi_level_conv_obj_1_bias, ema_bbox_head_multi_level_conv_obj_2_weight, ema_bbox_head_multi_level_conv_obj_2_bias

Registry:{}
Registry:{'img_scale': (640, 640), 'flip': False, 'transforms': [{'type': 'Resize', 'keep_ratio': True}, {'type': 'RandomFlip'}, {'type': 'Pad', 'pad_to_square': True, 'pad_val': {'img': (114.0, 114.0, 114.0)}}, {'type': 'DefaultFormatBundle'}, {'type': 'Collect', 'keys': ['img']}]}
Registry:{'keep_ratio': True}
Registry:{}
Registry:{'pad_to_square': True, 'pad_val': {'img': (114.0, 114.0, 114.0)}}
Registry:{}
Registry:{'keys': ['img']}
2022-07-21 09:57:54,053 - mmdeploy - WARNING - DeprecationWarning: get_onnx_config will be deprecated in the future. 
2022-07-21 09:57:54,053 - mmdeploy - INFO - Export PyTorch model to ONNX: /static/work_dirs/bcccd9e0-41a1-408d-9dfa-f4e634e9608c\end2end.onnx.
D:\Anaconda3\envs\aoc\lib\site-packages\mmdeploy\core\optimizers\function_marker.py:158: TracerWarning: Converting a tensor to a Python integer might cause the trace to be incorrect. We can't record the data flow of Python values, so this value will be treated as a constant in the future. This means that the trace might not generalize to other inputs!
  ys_shape = tuple(int(s) for s in ys.shape)
D:\Anaconda3\envs\aoc\lib\site-packages\torch\functional.py:568: UserWarning: torch.meshgrid: in an upcoming release, it will be required to pass the indexing argument. (Triggered internally at  C:\actions-runner\_work\pytorch\pytorch\builder\windows\pytorch\aten\src\ATen\native\TensorShape.cpp:2228.)
  return _VF.meshgrid(tensors, **kwargs)  # type: ignore[attr-defined]
D:\Anaconda3\envs\aoc\lib\site-packages\mmdeploy\codebase\mmdet\core\post_processing\bbox_nms.py:259: TracerWarning: Converting a tensor to a Python integer might cause the trace to be incorrect. We can't record the data flow of Python values, so this value will be treated as a constant in the future. This means that the trace might not generalize to other inputs!
  dets, labels = TRTBatchedNMSop.apply(boxes, scores, int(scores.shape[-1]),
D:\Anaconda3\envs\aoc\lib\site-packages\mmdeploy\mmcv\ops\nms.py:178: TracerWarning: Converting a tensor to a Python boolean might cause the trace to be incorrect. We can't record the data flow of Python values, so this value will be treated as a constant in the future. This means that the trace might not generalize to other inputs!
  out_boxes = min(num_boxes, after_topk)
WARNING: The shape inference of mmdeploy::TRTBatchedNMS type is missing, so it may result in wrong shape inference for the exported graph. Please consider adding it in symbolic function.
WARNING: The shape inference of mmdeploy::TRTBatchedNMS type is missing, so it may result in wrong shape inference for the exported graph. Please consider adding it in symbolic function.
WARNING: The shape inference of mmdeploy::TRTBatchedNMS type is missing, so it may result in wrong shape inference for the exported graph. Please consider adding it in symbolic function.
WARNING: The shape inference of mmdeploy::TRTBatchedNMS type is missing, so it may result in wrong shape inference for the exported graph. Please consider adding it in symbolic function.
WARNING: The shape inference of mmdeploy::TRTBatchedNMS type is missing, so it may result in wrong shape inference for the exported graph. Please consider adding it in symbolic function.
WARNING: The shape inference of mmdeploy::TRTBatchedNMS type is missing, so it may result in wrong shape inference for the exported graph. Please consider adding it in symbolic function.
2022-07-21 09:58:17,235 - mmdeploy - INFO - Execute onnx optimize passes.
2022-07-21 09:58:17,235 - mmdeploy - WARNING - Can not optimize model, please build torchscipt extension.
More details: https://github.com/open-mmlab/mmdeploy/blob/master/docs/en/experimental/onnx_optimizer.md
2022-07-21 09:58:21,554 - mmdeploy - INFO - Start pipeline mmdeploy.backend.tensorrt.onnx2tensorrt.onnx2tensorrt in subprocess
2022-07-21 09:58:22,324 - mmdeploy - INFO - Successfully loaded tensorrt plugins from D:\Anaconda3\envs\aoc\lib\site-packages\mmdeploy\lib\mmdeploy_tensorrt_ops.dll
[07/21/2022-09:58:25] [TRT] [I] [MemUsageChange] Init CUDA: CPU +198, GPU +0, now: CPU 10828, GPU 990 (MiB)
[07/21/2022-09:58:27] [TRT] [I] [MemUsageChange] Init builder kernel library: CPU +6, GPU +2, now: CPU 11015, GPU 992 (MiB)
[07/21/2022-09:58:27] [TRT] [W] onnx2trt_utils.cpp:369: Your ONNX model has been generated with INT64 weights, while TensorRT does not natively support INT64. Attempting to cast down to INT32.
[07/21/2022-09:58:28] [TRT] [W] onnx2trt_utils.cpp:395: One or more weights outside the range of INT32 was clamped
[07/21/2022-09:58:28] [TRT] [W] onnx2trt_utils.cpp:395: One or more weights outside the range of INT32 was clamped
[07/21/2022-09:58:28] [TRT] [W] onnx2trt_utils.cpp:395: One or more weights outside the range of INT32 was clamped
[07/21/2022-09:58:28] [TRT] [I] No importer registered for op: TRTBatchedNMS. Attempting to import as plugin.
[07/21/2022-09:58:28] [TRT] [I] Searching for plugin: TRTBatchedNMS, plugin_version: 1, plugin_namespace:
[07/21/2022-09:58:28] [TRT] [I] Successfully created plugin: TRTBatchedNMS
[07/21/2022-09:58:28] [TRT] [W] FP16 support requested on hardware without native FP16 support, performance will be negatively affected.
[07/21/2022-09:58:30] [TRT] [I] [MemUsageChange] Init cuBLAS/cuBLASLt: CPU +211, GPU +74, now: CPU 11542, GPU 1066 (MiB)
[07/21/2022-09:58:31] [TRT] [I] [MemUsageChange] Init cuDNN: CPU +171, GPU +80, now: CPU 11713, GPU 1146 (MiB)
[07/21/2022-09:58:31] [TRT] [W] TensorRT was linked against cuDNN 8.4.1 but loaded cuDNN 8.2.0
[07/21/2022-09:58:31] [TRT] [I] Local timing cache in use. Profiling results in this builder pass will not be stored.
[07/21/2022-09:58:31] [TRT] [E] 4: [shapeCompiler.cpp::nvinfer1::builder::DynamicSlotBuilder::evaluateShapeChecks::911] Error Code 4: Internal Error (kOPT values for profile 0 violate shape constraints: condition '==' violated. 6400 != 16800. Concat_505: dimensions not compatible for concatenation)
Process Process-3:
Traceback (most recent call last):
  File "D:\Anaconda3\envs\aoc\lib\multiprocessing\process.py", line 315, in _bootstrap
    self.run()
  File "D:\Anaconda3\envs\aoc\lib\multiprocessing\process.py", line 108, in run
    self._target(*self._args, **self._kwargs)
  File "D:\Anaconda3\envs\aoc\lib\site-packages\mmdeploy\apis\core\pipeline_manager.py", line 107, in __call__
    ret = func(*args, **kwargs)
  File "D:\Anaconda3\envs\aoc\lib\site-packages\mmdeploy\backend\tensorrt\onnx2tensorrt.py", line 79, in onnx2tensorrt
    from_onnx(
  File "D:\Anaconda3\envs\aoc\lib\site-packages\mmdeploy\backend\tensorrt\utils.py", line 153, in from_onnx
    assert engine is not None, 'Failed to create TensorRT engine'
AssertionError: Failed to create TensorRT engine
2022-07-21 09:58:31,918 - mmdeploy - ERROR - `mmdeploy.backend.tensorrt.onnx2tensorrt.onnx2tensorrt` with Call id: 1 failed. exit.
[2022-07-21 09:58:31,919] ERROR:huey.consumer:Worker-1:Process Worker-1 died!
Traceback (most recent call last):
  File "D:\Anaconda3\envs\aoc\lib\site-packages\huey\consumer.py", line 356, in _run
    process.loop()
  File "D:\Anaconda3\envs\aoc\lib\site-packages\huey\consumer.py", line 117, in loop
    self.huey.execute(task, now)
  File "D:\Anaconda3\envs\aoc\lib\site-packages\huey\api.py", line 362, in execute
    return self._execute(task, timestamp)
  File "D:\Anaconda3\envs\aoc\lib\site-packages\huey\api.py", line 379, in _execute
    task_value = task.execute()
  File "D:\Anaconda3\envs\aoc\lib\site-packages\huey\api.py", line 772, in execute
    return func(*args, **kwargs)
  File "D:\workspace\python\ai-online-core\publish.py", line 153, in deploy
    onnx2tensorrt(
  File "D:\Anaconda3\envs\aoc\lib\site-packages\mmdeploy\apis\core\pipeline_manager.py", line 356, in _wrap
    return self.call_function(func_name_, *args, **kwargs)
  File "D:\Anaconda3\envs\aoc\lib\site-packages\mmdeploy\apis\core\pipeline_manager.py", line 324, in call_function
    return self.get_result_sync(call_id)
  File "D:\Anaconda3\envs\aoc\lib\site-packages\mmdeploy\apis\core\pipeline_manager.py", line 305, in get_result_sync
    ret = self.get_caller(func_name).pop_mp_output(call_id)
  File "D:\Anaconda3\envs\aoc\lib\site-packages\mmdeploy\apis\core\pipeline_manager.py", line 82, in pop_mp_output
    exit()
  File "D:\Anaconda3\envs\aoc\lib\_sitebuiltins.py", line 26, in __call__
    raise SystemExit(code)
SystemExit: None
[2022-07-21 09:58:34,199] WARNING:huey.consumer:MainThread:Worker 1 died, restarting.
@AllentDan AllentDan self-assigned this Jul 21, 2022
@AllentDan
Copy link
Member

Hi, @gzxy-0102 please update mmdeploy to the latest as we just fixed a bug of converting yolox to tensorrt.

@gzxy-0102
Copy link
Author

Hi, @gzxy-0102 please update mmdeploy to the latest as we just fixed a bug of converting yolox to tensorrt.

I am using the latest version

@AllentDan
Copy link
Member

Just to make sure, #758 was merged 20 hours ago. And it fixed the bug.

@gzxy-0102
Copy link
Author

ennnn it's git master branch? I am using 0.6.0 release

@AllentDan
Copy link
Member

Yes, just fixed hours ago. The bug is only triggered for some versions of TensorRT and 8.4.1.5 is in the list.

@gzxy-0102
Copy link
Author

ok got it
But why doesn't the onnx model I converted continue to execute after the Detector is instantiated?

@AllentDan
Copy link
Member

Where did you import the Detector from? There is no such a class named Detector. If you want to inference the backend engines, you may try:

    from mmdeploy.apis.utils import build_task_processor
    task_processor = build_task_processor(model_cfg, deploy_cfg, device)

    model = task_processor.init_backend_model(backend_files)

    input_shape = get_input_shape(deploy_cfg)
    model_inputs, _ = task_processor.create_input(img, input_shape)

    with torch.no_grad():
        result = task_processor.run_inference(model, model_inputs)

@gzxy-0102
Copy link
Author

gzxy-0102 commented Jul 21, 2022

ennn
I am import Detector from mmdeploy_python

@gzxy-0102
Copy link
Author

I know it from document
image

@AllentDan
Copy link
Member

AllentDan commented Jul 21, 2022

I see. It is from the SDK of MMDeploy. Would you please show the contents of work_dir passed to Detector. And what is your operating system by the way?

@gzxy-0102
Copy link
Author

gzxy-0102 commented Jul 21, 2022

This is the log information I get when I call the sdk

2022-07-21 11:00:41 - tortoise.db_client:197 - DEBUG - SELECT `updated_at`,`cfg`,`state`,`dataset_root`,`epoch`,`best_checkpoint`,`total_epoch`,`huey_id`,`cfg_file`,`id`,`work_dir`,`best_onnx`,`accuracy`,`dataset_type`,`eta`,`created_at` FROM `mmdet_train` WHERE `id`='bcccd9e0-41a1-408d-9dfa-f4e634e9608c' LIMIT 2: None
[2022-07-21 11:00:41.480] [mmdeploy] [info] [model.cpp:38] DirectoryModel successfully load sdk model /static/work_dirs/bcccd9e0-41a1-408d-9dfa-f4e634e9608c
[2022-07-21 11:00:41.500] [mmdeploy] [info] [common.h:29] config: {
  "context": {
    "device": "<any>",
    "stream": "<any>"
  },
  "input": [
    "image"
  ],
  "name": "mmdetection",
  "output": [
    "det"
  ],
  "params": {
    "model": "<any>"
  },
  "type": "Inference"
}
[2022-07-21 11:00:41.501] [mmdeploy] [info] [common.h:29] config: {
  "context": {
    "device": "<any>",
    "model": "<any>",
    "stream": "<any>"
  },
  "input": [
    "img"
  ],
  "module": "Transform",
  "name": "Preprocess",
  "output": [
    "prep_output"
  ],
  "transforms": [
    {
      "type": "LoadImageFromFile"
    },
    {
      "keep_ratio": true,
      "size": [
        640,
        640
      ],
      "type": "Resize"
    },
    {
      "pad_to_square": true,
      "pad_val": {
        "img": [
          114.0,
          114.0,
          114.0
        ]
      },
      "type": "Pad"
    },
    {
      "type": "DefaultFormatBundle"
    },
    {
      "keys": [
        "img"
      ],
      "meta_keys": [
        "img_shape",
        "ori_shape",
        "flip",
        "pad_shape",
        "flip_direction",
        "filename",
        "scale_factor",
        "valid_ratio",
        "img_norm_cfg",
        "ori_filename"
      ],
      "type": "Collect"
    }
  ],
  "type": "Task"
}
[2022-07-21 11:00:41.504] [mmdeploy] [info] [common.h:29] config: {
  "context": {
    "device": "<any>",
    "model": "<any>",
    "stream": "<any>"
  },
  "input": [
    "img"
  ],
  "module": "Transform",
  "name": "Preprocess",
  "output": [
    "prep_output"
  ],
  "transforms": [
    {
      "type": "LoadImageFromFile"
    },
    {
      "keep_ratio": true,
      "size": [
        640,
        640
      ],
      "type": "Resize"
    },
    {
      "pad_to_square": true,
      "pad_val": {
        "img": [
          114.0,
          114.0,
          114.0
        ]
      },
      "type": "Pad"
    },
    {
      "type": "DefaultFormatBundle"
    },
    {
      "keys": [
        "img"
      ],
      "meta_keys": [
        "img_shape",
        "ori_shape",
        "flip",
        "pad_shape",
        "flip_direction",
        "filename",
        "scale_factor",
        "valid_ratio",
        "img_norm_cfg",
        "ori_filename"
      ],
      "type": "Collect"
    }
  ],
  "type": "Task"
}
[2022-07-21 11:00:41.506] [mmdeploy] [info] [common.h:29] config: {
  "context": {
    "device": "<any>",
    "model": "<any>",
    "stream": "<any>"
  },
  "input": [
    "prep_output"
  ],
  "input_map": {
    "img": "input"
  },
  "module": "Net",
  "name": "yolox",
  "output": [
    "infer_output"
  ],
  "type": "Task"
}
[2022-07-21 11:00:41.507] [mmdeploy] [info] [common.h:29] config: {
  "context": {
    "device": "<any>",
    "model": "<any>",
    "stream": "<any>"
  },
  "input": [
    "prep_output"
  ],
  "input_map": {
    "img": "input"
  },
  "module": "Net",
  "name": "yolox",
  "output": [
    "infer_output"
  ],
  "type": "Task"
}

Here are all the files inside the working directory

image

My operating system is windows 11

@AllentDan
Copy link
Member

Please use --dump-info when running tools/deploy.py. And you are using ONNXRuntime backend now? As the bug fixed already, you may try TensorRT.

@gzxy-0102
Copy link
Author

Using the latest version but still getting an error

2022-07-21 14:53:55,486 - mmdeploy - INFO - 当前任务ID:bcccd9e0-41a1-408d-9dfa-f4e634e9608c
Registry:{'input_size': (640, 640), 'random_size_range': (15, 25), 'random_size_interval': 10, 'backbone': {'type': 'CSPDarknet', 'deepen_factor': 1.0, 'widen_factor': 1.0}, 'neck': {'type': 'YOLOXPAFPN', 'in_channels': [256, 512, 1024], 'out_channels': 256, 'num_csp_blocks': 3}, 'bbox_head': {'type': 'YOLOXHead', 'num_classes': 5, 'in_channels': 256, 'feat_channels': 256}, 'train_cfg': None, 'test_cfg': {'score_thr': 0.01, 'nms': {'type': 'nms', 'iou_threshold': 0.65}}}
Registry:{'deepen_factor': 1.0, 'widen_factor': 1.0}
Registry:{}
Registry:{}
Registry:{}
Registry:{}
Registry:{}
Registry:{}
Registry:{}
Registry:{}
Registry:{}
Registry:{}
Registry:{}
Registry:{}
Registry:{}
Registry:{}
Registry:{}
Registry:{}
Registry:{}
Registry:{}
Registry:{}
Registry:{}
Registry:{}
Registry:{}
Registry:{}
Registry:{}
Registry:{}
Registry:{}
Registry:{}
Registry:{}
Registry:{}
Registry:{}
Registry:{}
Registry:{}
Registry:{}
Registry:{}
Registry:{}
Registry:{}
Registry:{}
Registry:{}
Registry:{}
Registry:{}
Registry:{}
Registry:{}
Registry:{}
Registry:{}
Registry:{}
Registry:{}
Registry:{}
Registry:{}
Registry:{}
Registry:{}
Registry:{}
Registry:{}
Registry:{}
Registry:{}
Registry:{}
Registry:{}
Registry:{}
Registry:{}
Registry:{}
Registry:{}
Registry:{}
Registry:{}
Registry:{}
Registry:{}
Registry:{}
Registry:{}
Registry:{}
Registry:{'in_channels': [256, 512, 1024], 'out_channels': 256, 'num_csp_blocks': 3}
Registry:{}
Registry:{}
Registry:{}
Registry:{}
Registry:{}
Registry:{}
Registry:{}
Registry:{}
Registry:{}
Registry:{}
Registry:{}
Registry:{}
Registry:{}
Registry:{}
Registry:{}
Registry:{}
Registry:{}
Registry:{}
Registry:{}
Registry:{}
Registry:{}
Registry:{}
Registry:{}
Registry:{}
Registry:{}
Registry:{}
Registry:{}
Registry:{}
Registry:{}
Registry:{}
Registry:{}
Registry:{}
Registry:{}
Registry:{}
Registry:{}
Registry:{}
Registry:{}
Registry:{}
Registry:{}
Registry:{}
Registry:{}
Registry:{}
Registry:{}
Registry:{'num_classes': 5, 'in_channels': 256, 'feat_channels': 256, 'train_cfg': None, 'test_cfg': {'score_thr': 0.01, 'nms': {'type': 'nms', 'iou_threshold': 0.65}}}
Registry:{'use_sigmoid': True, 'reduction': 'sum', 'loss_weight': 1.0}
Registry:{'mode': 'square', 'eps': 1e-16, 'reduction': 'sum', 'loss_weight': 5.0}
Registry:{'use_sigmoid': True, 'reduction': 'sum', 'loss_weight': 1.0}
Registry:{'reduction': 'sum', 'loss_weight': 1.0}
Registry:{}
Registry:{}
Registry:{}
Registry:{}
Registry:{}
Registry:{}
Registry:{}
Registry:{}
Registry:{}
Registry:{}
Registry:{}
Registry:{}
load checkpoint from local path: D:\static\work_dirs\bcccd9e0-41a1-408d-9dfa-f4e634e9608c\best_bbox_mAP_epoch_149.pth
The model and loaded state dict do not match exactly

unexpected key in source state_dict: ema_backbone_stem_conv_conv_weight, ema_backbone_stem_conv_bn_weight, ema_backbone_stem_conv_bn_bias, ema_backbone_stem_conv_bn_running_mean, ema_backbone_stem_conv_bn_running_var, ema_backbone_stem_conv_bn_num_batches_tracked, ema_backbone_stage1_0_conv_weight, ema_backbone_stage1_0_bn_weight, ema_backbone_stage1_0_bn_bias, ema_backbone_stage1_0_bn_running_mean, ema_backbone_stage1
_0_bn_running_var, ema_backbone_stage1_0_bn_num_batches_tracked, ema_backbone_stage1_1_main_conv_conv_weight, ema_backbone_stage1_1_main_conv_bn_weight, ema_backbone_stage1_1_main_conv_bn_bias, ema_backbone_stage1_1_main_conv_bn_running_mean, ema_backbone_stage1_1_main_conv_bn_running_var, ema_backbone_stage1_1_main_conv_bn_num_batches_tracked, ema_backbone_stage1_1_short_conv_conv_weight, ema_backbone_stage1_1_short_c
onv_bn_weight, ema_backbone_stage1_1_short_conv_bn_bias, ema_backbone_stage1_1_short_conv_bn_running_mean, ema_backbone_stage1_1_short_conv_bn_running_var, ema_backbone_stage1_1_short_conv_bn_num_batches_tracked, ema_backbone_stage1_1_final_conv_conv_weight, ema_backbone_stage1_1_final_conv_bn_weight, ema_backbone_stage1_1_final_conv_bn_bias, ema_backbone_stage1_1_final_conv_bn_running_mean, ema_backbone_stage1_1_final
_conv_bn_running_var, ema_backbone_stage1_1_final_conv_bn_num_batches_tracked, ema_backbone_stage1_1_blocks_0_conv1_conv_weight, ema_backbone_stage1_1_blocks_0_conv1_bn_weight, ema_backbone_stage1_1_blocks_0_conv1_bn_bias, ema_backbone_stage1_1_blocks_0_conv1_bn_running_mean, ema_backbone_stage1_1_blocks_0_conv1_bn_running_var, ema_backbone_stage1_1_blocks_0_conv1_bn_num_batches_tracked, ema_backbone_stage1_1_blocks_0_
conv2_conv_weight, ema_backbone_stage1_1_blocks_0_conv2_bn_weight, ema_backbone_stage1_1_blocks_0_conv2_bn_bias, ema_backbone_stage1_1_blocks_0_conv2_bn_running_mean, ema_backbone_stage1_1_blocks_0_conv2_bn_running_var, ema_backbone_stage1_1_blocks_0_conv2_bn_num_batches_tracked, ema_backbone_stage1_1_blocks_1_conv1_conv_weight, ema_backbone_stage1_1_blocks_1_conv1_bn_weight, ema_backbone_stage1_1_blocks_1_conv1_bn_bia
s, ema_backbone_stage1_1_blocks_1_conv1_bn_running_mean, ema_backbone_stage1_1_blocks_1_conv1_bn_running_var, ema_backbone_stage1_1_blocks_1_conv1_bn_num_batches_tracked, ema_backbone_stage1_1_blocks_1_conv2_conv_weight, ema_backbone_stage1_1_blocks_1_conv2_bn_weight, ema_backbone_stage1_1_blocks_1_conv2_bn_bias, ema_backbone_stage1_1_blocks_1_conv2_bn_running_mean, ema_backbone_stage1_1_blocks_1_conv2_bn_running_var, 
ema_backbone_stage1_1_blocks_1_conv2_bn_num_batches_tracked, ema_backbone_stage1_1_blocks_2_conv1_conv_weight, ema_backbone_stage1_1_blocks_2_conv1_bn_weight, ema_backbone_stage1_1_blocks_2_conv1_bn_bias, ema_backbone_stage1_1_blocks_2_conv1_bn_running_mean, ema_backbone_stage1_1_blocks_2_conv1_bn_running_var, ema_backbone_stage1_1_blocks_2_conv1_bn_num_batches_tracked, ema_backbone_stage1_1_blocks_2_conv2_conv_weight,
 ema_backbone_stage1_1_blocks_2_conv2_bn_weight, ema_backbone_stage1_1_blocks_2_conv2_bn_bias, ema_backbone_stage1_1_blocks_2_conv2_bn_running_mean, ema_backbone_stage1_1_blocks_2_conv2_bn_running_var, ema_backbone_stage1_1_blocks_2_conv2_bn_num_batches_tracked, ema_backbone_stage2_0_conv_weight, ema_backbone_stage2_0_bn_weight, ema_backbone_stage2_0_bn_bias, ema_backbone_stage2_0_bn_running_mean, ema_backbone_stage2_0
_bn_running_var, ema_backbone_stage2_0_bn_num_batches_tracked, ema_backbone_stage2_1_main_conv_conv_weight, ema_backbone_stage2_1_main_conv_bn_weight, ema_backbone_stage2_1_main_conv_bn_bias, ema_backbone_stage2_1_main_conv_bn_running_mean, ema_backbone_stage2_1_main_conv_bn_running_var, ema_backbone_stage2_1_main_conv_bn_num_batches_tracked, ema_backbone_stage2_1_short_conv_conv_weight, ema_backbone_stage2_1_short_con
v_bn_weight, ema_backbone_stage2_1_short_conv_bn_bias, ema_backbone_stage2_1_short_conv_bn_running_mean, ema_backbone_stage2_1_short_conv_bn_running_var, ema_backbone_stage2_1_short_conv_bn_num_batches_tracked, ema_backbone_stage2_1_final_conv_conv_weight, ema_backbone_stage2_1_final_conv_bn_weight, ema_backbone_stage2_1_final_conv_bn_bias, ema_backbone_stage2_1_final_conv_bn_running_mean, ema_backbone_stage2_1_final_c
onv_bn_running_var, ema_backbone_stage2_1_final_conv_bn_num_batches_tracked, ema_backbone_stage2_1_blocks_0_conv1_conv_weight, ema_backbone_stage2_1_blocks_0_conv1_bn_weight, ema_backbone_stage2_1_blocks_0_conv1_bn_bias, ema_backbone_stage2_1_blocks_0_conv1_bn_running_mean, ema_backbone_stage2_1_blocks_0_conv1_bn_running_var, ema_backbone_stage2_1_blocks_0_conv1_bn_num_batches_tracked, ema_backbone_stage2_1_blocks_0_co
nv2_conv_weight, ema_backbone_stage2_1_blocks_0_conv2_bn_weight, ema_backbone_stage2_1_blocks_0_conv2_bn_bias, ema_backbone_stage2_1_blocks_0_conv2_bn_running_mean, ema_backbone_stage2_1_blocks_0_conv2_bn_running_var, ema_backbone_stage2_1_blocks_0_conv2_bn_num_batches_tracked, ema_backbone_stage2_1_blocks_1_conv1_conv_weight, ema_backbone_stage2_1_blocks_1_conv1_bn_weight, ema_backbone_stage2_1_blocks_1_conv1_bn_bias,
 ema_backbone_stage2_1_blocks_1_conv1_bn_running_mean, ema_backbone_stage2_1_blocks_1_conv1_bn_running_var, ema_backbone_stage2_1_blocks_1_conv1_bn_num_batches_tracked, ema_backbone_stage2_1_blocks_1_conv2_conv_weight, ema_backbone_stage2_1_blocks_1_conv2_bn_weight, ema_backbone_stage2_1_blocks_1_conv2_bn_bias, ema_backbone_stage2_1_blocks_1_conv2_bn_running_mean, ema_backbone_stage2_1_blocks_1_conv2_bn_running_var, em
a_backbone_stage2_1_blocks_1_conv2_bn_num_batches_tracked, ema_backbone_stage2_1_blocks_2_conv1_conv_weight, ema_backbone_stage2_1_blocks_2_conv1_bn_weight, ema_backbone_stage2_1_blocks_2_conv1_bn_bias, ema_backbone_stage2_1_blocks_2_conv1_bn_running_mean, ema_backbone_stage2_1_blocks_2_conv1_bn_running_var, ema_backbone_stage2_1_blocks_2_conv1_bn_num_batches_tracked, ema_backbone_stage2_1_blocks_2_conv2_conv_weight, e
ma_backbone_stage2_1_blocks_2_conv2_bn_weight, ema_backbone_stage2_1_blocks_2_conv2_bn_bias, ema_backbone_stage2_1_blocks_2_conv2_bn_running_mean, ema_backbone_stage2_1_blocks_2_conv2_bn_running_var, ema_backbone_stage2_1_blocks_2_conv2_bn_num_batches_tracked, ema_backbone_stage2_1_blocks_3_conv1_conv_weight, ema_backbone_stage2_1_blocks_3_conv1_bn_weight, ema_backbone_stage2_1_blocks_3_conv1_bn_bias, ema_backbone_stag
e2_1_blocks_3_conv1_bn_running_mean, ema_backbone_stage2_1_blocks_3_conv1_bn_running_var, ema_backbone_stage2_1_blocks_3_conv1_bn_num_batches_tracked, ema_backbone_stage2_1_blocks_3_conv2_conv_weight, ema_backbone_stage2_1_blocks_3_conv2_bn_weight, ema_backbone_stage2_1_blocks_3_conv2_bn_bias, ema_backbone_stage2_1_blocks_3_conv2_bn_running_mean, ema_backbone_stage2_1_blocks_3_conv2_bn_running_var, ema_backbone_stage2_
1_blocks_3_conv2_bn_num_batches_tracked, ema_backbone_stage2_1_blocks_4_conv1_conv_weight, ema_backbone_stage2_1_blocks_4_conv1_bn_weight, ema_backbone_stage2_1_blocks_4_conv1_bn_bias, ema_backbone_stage2_1_blocks_4_conv1_bn_running_mean, ema_backbone_stage2_1_blocks_4_conv1_bn_running_var, ema_backbone_stage2_1_blocks_4_conv1_bn_num_batches_tracked, ema_backbone_stage2_1_blocks_4_conv2_conv_weight, ema_backbone_stage2
_1_blocks_4_conv2_bn_weight, ema_backbone_stage2_1_blocks_4_conv2_bn_bias, ema_backbone_stage2_1_blocks_4_conv2_bn_running_mean, ema_backbone_stage2_1_blocks_4_conv2_bn_running_var, ema_backbone_stage2_1_blocks_4_conv2_bn_num_batches_tracked, ema_backbone_stage2_1_blocks_5_conv1_conv_weight, ema_backbone_stage2_1_blocks_5_conv1_bn_weight, ema_backbone_stage2_1_blocks_5_conv1_bn_bias, ema_backbone_stage2_1_blocks_5_conv
1_bn_running_mean, ema_backbone_stage2_1_blocks_5_conv1_bn_running_var, ema_backbone_stage2_1_blocks_5_conv1_bn_num_batches_tracked, ema_backbone_stage2_1_blocks_5_conv2_conv_weight, ema_backbone_stage2_1_blocks_5_conv2_bn_weight, ema_backbone_stage2_1_blocks_5_conv2_bn_bias, ema_backbone_stage2_1_blocks_5_conv2_bn_running_mean, ema_backbone_stage2_1_blocks_5_conv2_bn_running_var, ema_backbone_stage2_1_blocks_5_conv2_b
n_num_batches_tracked, ema_backbone_stage2_1_blocks_6_conv1_conv_weight, ema_backbone_stage2_1_blocks_6_conv1_bn_weight, ema_backbone_stage2_1_blocks_6_conv1_bn_bias, ema_backbone_stage2_1_blocks_6_conv1_bn_running_mean, ema_backbone_stage2_1_blocks_6_conv1_bn_running_var, ema_backbone_stage2_1_blocks_6_conv1_bn_num_batches_tracked, ema_backbone_stage2_1_blocks_6_conv2_conv_weight, ema_backbone_stage2_1_blocks_6_conv2_
bn_weight, ema_backbone_stage2_1_blocks_6_conv2_bn_bias, ema_backbone_stage2_1_blocks_6_conv2_bn_running_mean, ema_backbone_stage2_1_blocks_6_conv2_bn_running_var, ema_backbone_stage2_1_blocks_6_conv2_bn_num_batches_tracked, ema_backbone_stage2_1_blocks_7_conv1_conv_weight, ema_backbone_stage2_1_blocks_7_conv1_bn_weight, ema_backbone_stage2_1_blocks_7_conv1_bn_bias, ema_backbone_stage2_1_blocks_7_conv1_bn_running_mean,
 ema_backbone_stage2_1_blocks_7_conv1_bn_running_var, ema_backbone_stage2_1_blocks_7_conv1_bn_num_batches_tracked, ema_backbone_stage2_1_blocks_7_conv2_conv_weight, ema_backbone_stage2_1_blocks_7_conv2_bn_weight, ema_backbone_stage2_1_blocks_7_conv2_bn_bias, ema_backbone_stage2_1_blocks_7_conv2_bn_running_mean, ema_backbone_stage2_1_blocks_7_conv2_bn_running_var, ema_backbone_stage2_1_blocks_7_conv2_bn_num_batches_trac
ked, ema_backbone_stage2_1_blocks_8_conv1_conv_weight, ema_backbone_stage2_1_blocks_8_conv1_bn_weight, ema_backbone_stage2_1_blocks_8_conv1_bn_bias, ema_backbone_stage2_1_blocks_8_conv1_bn_running_mean, ema_backbone_stage2_1_blocks_8_conv1_bn_running_var, ema_backbone_stage2_1_blocks_8_conv1_bn_num_batches_tracked, ema_backbone_stage2_1_blocks_8_conv2_conv_weight, ema_backbone_stage2_1_blocks_8_conv2_bn_weight, ema_bac
kbone_stage2_1_blocks_8_conv2_bn_bias, ema_backbone_stage2_1_blocks_8_conv2_bn_running_mean, ema_backbone_stage2_1_blocks_8_conv2_bn_running_var, ema_backbone_stage2_1_blocks_8_conv2_bn_num_batches_tracked, ema_backbone_stage3_0_conv_weight, ema_backbone_stage3_0_bn_weight, ema_backbone_stage3_0_bn_bias, ema_backbone_stage3_0_bn_running_mean, ema_backbone_stage3_0_bn_running_var, ema_backbone_stage3_0_bn_num_batches_tr
acked, ema_backbone_stage3_1_main_conv_conv_weight, ema_backbone_stage3_1_main_conv_bn_weight, ema_backbone_stage3_1_main_conv_bn_bias, ema_backbone_stage3_1_main_conv_bn_running_mean, ema_backbone_stage3_1_main_conv_bn_running_var, ema_backbone_stage3_1_main_conv_bn_num_batches_tracked, ema_backbone_stage3_1_short_conv_conv_weight, ema_backbone_stage3_1_short_conv_bn_weight, ema_backbone_stage3_1_short_conv_bn_bias, e
ma_backbone_stage3_1_short_conv_bn_running_mean, ema_backbone_stage3_1_short_conv_bn_running_var, ema_backbone_stage3_1_short_conv_bn_num_batches_tracked, ema_backbone_stage3_1_final_conv_conv_weight, ema_backbone_stage3_1_final_conv_bn_weight, ema_backbone_stage3_1_final_conv_bn_bias, ema_backbone_stage3_1_final_conv_bn_running_mean, ema_backbone_stage3_1_final_conv_bn_running_var, ema_backbone_stage3_1_final_conv_bn_
num_batches_tracked, ema_backbone_stage3_1_blocks_0_conv1_conv_weight, ema_backbone_stage3_1_blocks_0_conv1_bn_weight, ema_backbone_stage3_1_blocks_0_conv1_bn_bias, ema_backbone_stage3_1_blocks_0_conv1_bn_running_mean, ema_backbone_stage3_1_blocks_0_conv1_bn_running_var, ema_backbone_stage3_1_blocks_0_conv1_bn_num_batches_tracked, ema_backbone_stage3_1_blocks_0_conv2_conv_weight, ema_backbone_stage3_1_blocks_0_conv2_bn
_weight, ema_backbone_stage3_1_blocks_0_conv2_bn_bias, ema_backbone_stage3_1_blocks_0_conv2_bn_running_mean, ema_backbone_stage3_1_blocks_0_conv2_bn_running_var, ema_backbone_stage3_1_blocks_0_conv2_bn_num_batches_tracked, ema_backbone_stage3_1_blocks_1_conv1_conv_weight, ema_backbone_stage3_1_blocks_1_conv1_bn_weight, ema_backbone_stage3_1_blocks_1_conv1_bn_bias, ema_backbone_stage3_1_blocks_1_conv1_bn_running_mean, e
ma_backbone_stage3_1_blocks_1_conv1_bn_running_var, ema_backbone_stage3_1_blocks_1_conv1_bn_num_batches_tracked, ema_backbone_stage3_1_blocks_1_conv2_conv_weight, ema_backbone_stage3_1_blocks_1_conv2_bn_weight, ema_backbone_stage3_1_blocks_1_conv2_bn_bias, ema_backbone_stage3_1_blocks_1_conv2_bn_running_mean, ema_backbone_stage3_1_blocks_1_conv2_bn_running_var, ema_backbone_stage3_1_blocks_1_conv2_bn_num_batches_tracke
d, ema_backbone_stage3_1_blocks_2_conv1_conv_weight, ema_backbone_stage3_1_blocks_2_conv1_bn_weight, ema_backbone_stage3_1_blocks_2_conv1_bn_bias, ema_backbone_stage3_1_blocks_2_conv1_bn_running_mean, ema_backbone_stage3_1_blocks_2_conv1_bn_running_var, ema_backbone_stage3_1_blocks_2_conv1_bn_num_batches_tracked, ema_backbone_stage3_1_blocks_2_conv2_conv_weight, ema_backbone_stage3_1_blocks_2_conv2_bn_weight, ema_backb
one_stage3_1_blocks_2_conv2_bn_bias, ema_backbone_stage3_1_blocks_2_conv2_bn_running_mean, ema_backbone_stage3_1_blocks_2_conv2_bn_running_var, ema_backbone_stage3_1_blocks_2_conv2_bn_num_batches_tracked, ema_backbone_stage3_1_blocks_3_conv1_conv_weight, ema_backbone_stage3_1_blocks_3_conv1_bn_weight, ema_backbone_stage3_1_blocks_3_conv1_bn_bias, ema_backbone_stage3_1_blocks_3_conv1_bn_running_mean, ema_backbone_stage3
_1_blocks_3_conv1_bn_running_var, ema_backbone_stage3_1_blocks_3_conv1_bn_num_batches_tracked, ema_backbone_stage3_1_blocks_3_conv2_conv_weight, ema_backbone_stage3_1_blocks_3_conv2_bn_weight, ema_backbone_stage3_1_blocks_3_conv2_bn_bias, ema_backbone_stage3_1_blocks_3_conv2_bn_running_mean, ema_backbone_stage3_1_blocks_3_conv2_bn_running_var, ema_backbone_stage3_1_blocks_3_conv2_bn_num_batches_tracked, ema_backbone_st
age3_1_blocks_4_conv1_conv_weight, ema_backbone_stage3_1_blocks_4_conv1_bn_weight, ema_backbone_stage3_1_blocks_4_conv1_bn_bias, ema_backbone_stage3_1_blocks_4_conv1_bn_running_mean, ema_backbone_stage3_1_blocks_4_conv1_bn_running_var, ema_backbone_stage3_1_blocks_4_conv1_bn_num_batches_tracked, ema_backbone_stage3_1_blocks_4_conv2_conv_weight, ema_backbone_stage3_1_blocks_4_conv2_bn_weight, ema_backbone_stage3_1_block
s_4_conv2_bn_bias, ema_backbone_stage3_1_blocks_4_conv2_bn_running_mean, ema_backbone_stage3_1_blocks_4_conv2_bn_running_var, ema_backbone_stage3_1_blocks_4_conv2_bn_num_batches_tracked, ema_backbone_stage3_1_blocks_5_conv1_conv_weight, ema_backbone_stage3_1_blocks_5_conv1_bn_weight, ema_backbone_stage3_1_blocks_5_conv1_bn_bias, ema_backbone_stage3_1_blocks_5_conv1_bn_running_mean, ema_backbone_stage3_1_blocks_5_conv1_
bn_running_var, ema_backbone_stage3_1_blocks_5_conv1_bn_num_batches_tracked, ema_backbone_stage3_1_blocks_5_conv2_conv_weight, ema_backbone_stage3_1_blocks_5_conv2_bn_weight, ema_backbone_stage3_1_blocks_5_conv2_bn_bias, ema_backbone_stage3_1_blocks_5_conv2_bn_running_mean, ema_backbone_stage3_1_blocks_5_conv2_bn_running_var, ema_backbone_stage3_1_blocks_5_conv2_bn_num_batches_tracked, ema_backbone_stage3_1_blocks_6_co
nv1_conv_weight, ema_backbone_stage3_1_blocks_6_conv1_bn_weight, ema_backbone_stage3_1_blocks_6_conv1_bn_bias, ema_backbone_stage3_1_blocks_6_conv1_bn_running_mean, ema_backbone_stage3_1_blocks_6_conv1_bn_running_var, ema_backbone_stage3_1_blocks_6_conv1_bn_num_batches_tracked, ema_backbone_stage3_1_blocks_6_conv2_conv_weight, ema_backbone_stage3_1_blocks_6_conv2_bn_weight, ema_backbone_stage3_1_blocks_6_conv2_bn_bias,
 ema_backbone_stage3_1_blocks_6_conv2_bn_running_mean, ema_backbone_stage3_1_blocks_6_conv2_bn_running_var, ema_backbone_stage3_1_blocks_6_conv2_bn_num_batches_tracked, ema_backbone_stage3_1_blocks_7_conv1_conv_weight, ema_backbone_stage3_1_blocks_7_conv1_bn_weight, ema_backbone_stage3_1_blocks_7_conv1_bn_bias, ema_backbone_stage3_1_blocks_7_conv1_bn_running_mean, ema_backbone_stage3_1_blocks_7_conv1_bn_running_var, em
a_backbone_stage3_1_blocks_7_conv1_bn_num_batches_tracked, ema_backbone_stage3_1_blocks_7_conv2_conv_weight, ema_backbone_stage3_1_blocks_7_conv2_bn_weight, ema_backbone_stage3_1_blocks_7_conv2_bn_bias, ema_backbone_stage3_1_blocks_7_conv2_bn_running_mean, ema_backbone_stage3_1_blocks_7_conv2_bn_running_var, ema_backbone_stage3_1_blocks_7_conv2_bn_num_batches_tracked, ema_backbone_stage3_1_blocks_8_conv1_conv_weight, e
ma_backbone_stage3_1_blocks_8_conv1_bn_weight, ema_backbone_stage3_1_blocks_8_conv1_bn_bias, ema_backbone_stage3_1_blocks_8_conv1_bn_running_mean, ema_backbone_stage3_1_blocks_8_conv1_bn_running_var, ema_backbone_stage3_1_blocks_8_conv1_bn_num_batches_tracked, ema_backbone_stage3_1_blocks_8_conv2_conv_weight, ema_backbone_stage3_1_blocks_8_conv2_bn_weight, ema_backbone_stage3_1_blocks_8_conv2_bn_bias, ema_backbone_stag
e3_1_blocks_8_conv2_bn_running_mean, ema_backbone_stage3_1_blocks_8_conv2_bn_running_var, ema_backbone_stage3_1_blocks_8_conv2_bn_num_batches_tracked, ema_backbone_stage4_0_conv_weight, ema_backbone_stage4_0_bn_weight, ema_backbone_stage4_0_bn_bias, ema_backbone_stage4_0_bn_running_mean, ema_backbone_stage4_0_bn_running_var, ema_backbone_stage4_0_bn_num_batches_tracked, ema_backbone_stage4_1_conv1_conv_weight, ema_back
bone_stage4_1_conv1_bn_weight, ema_backbone_stage4_1_conv1_bn_bias, ema_backbone_stage4_1_conv1_bn_running_mean, ema_backbone_stage4_1_conv1_bn_running_var, ema_backbone_stage4_1_conv1_bn_num_batches_tracked, ema_backbone_stage4_1_conv2_conv_weight, ema_backbone_stage4_1_conv2_bn_weight, ema_backbone_stage4_1_conv2_bn_bias, ema_backbone_stage4_1_conv2_bn_running_mean, ema_backbone_stage4_1_conv2_bn_running_var, ema_bac
kbone_stage4_1_conv2_bn_num_batches_tracked, ema_backbone_stage4_2_main_conv_conv_weight, ema_backbone_stage4_2_main_conv_bn_weight, ema_backbone_stage4_2_main_conv_bn_bias, ema_backbone_stage4_2_main_conv_bn_running_mean, ema_backbone_stage4_2_main_conv_bn_running_var, ema_backbone_stage4_2_main_conv_bn_num_batches_tracked, ema_backbone_stage4_2_short_conv_conv_weight, ema_backbone_stage4_2_short_conv_bn_weight, ema_b
ackbone_stage4_2_short_conv_bn_bias, ema_backbone_stage4_2_short_conv_bn_running_mean, ema_backbone_stage4_2_short_conv_bn_running_var, ema_backbone_stage4_2_short_conv_bn_num_batches_tracked, ema_backbone_stage4_2_final_conv_conv_weight, ema_backbone_stage4_2_final_conv_bn_weight, ema_backbone_stage4_2_final_conv_bn_bias, ema_backbone_stage4_2_final_conv_bn_running_mean, ema_backbone_stage4_2_final_conv_bn_running_var
, ema_backbone_stage4_2_final_conv_bn_num_batches_tracked, ema_backbone_stage4_2_blocks_0_conv1_conv_weight, ema_backbone_stage4_2_blocks_0_conv1_bn_weight, ema_backbone_stage4_2_blocks_0_conv1_bn_bias, ema_backbone_stage4_2_blocks_0_conv1_bn_running_mean, ema_backbone_stage4_2_blocks_0_conv1_bn_running_var, ema_backbone_stage4_2_blocks_0_conv1_bn_num_batches_tracked, ema_backbone_stage4_2_blocks_0_conv2_conv_weight, e
ma_backbone_stage4_2_blocks_0_conv2_bn_weight, ema_backbone_stage4_2_blocks_0_conv2_bn_bias, ema_backbone_stage4_2_blocks_0_conv2_bn_running_mean, ema_backbone_stage4_2_blocks_0_conv2_bn_running_var, ema_backbone_stage4_2_blocks_0_conv2_bn_num_batches_tracked, ema_backbone_stage4_2_blocks_1_conv1_conv_weight, ema_backbone_stage4_2_blocks_1_conv1_bn_weight, ema_backbone_stage4_2_blocks_1_conv1_bn_bias, ema_backbone_stag
e4_2_blocks_1_conv1_bn_running_mean, ema_backbone_stage4_2_blocks_1_conv1_bn_running_var, ema_backbone_stage4_2_blocks_1_conv1_bn_num_batches_tracked, ema_backbone_stage4_2_blocks_1_conv2_conv_weight, ema_backbone_stage4_2_blocks_1_conv2_bn_weight, ema_backbone_stage4_2_blocks_1_conv2_bn_bias, ema_backbone_stage4_2_blocks_1_conv2_bn_running_mean, ema_backbone_stage4_2_blocks_1_conv2_bn_running_var, ema_backbone_stage4_
2_blocks_1_conv2_bn_num_batches_tracked, ema_backbone_stage4_2_blocks_2_conv1_conv_weight, ema_backbone_stage4_2_blocks_2_conv1_bn_weight, ema_backbone_stage4_2_blocks_2_conv1_bn_bias, ema_backbone_stage4_2_blocks_2_conv1_bn_running_mean, ema_backbone_stage4_2_blocks_2_conv1_bn_running_var, ema_backbone_stage4_2_blocks_2_conv1_bn_num_batches_tracked, ema_backbone_stage4_2_blocks_2_conv2_conv_weight, ema_backbone_stage4
_2_blocks_2_conv2_bn_weight, ema_backbone_stage4_2_blocks_2_conv2_bn_bias, ema_backbone_stage4_2_blocks_2_conv2_bn_running_mean, ema_backbone_stage4_2_blocks_2_conv2_bn_running_var, ema_backbone_stage4_2_blocks_2_conv2_bn_num_batches_tracked, ema_neck_reduce_layers_0_conv_weight, ema_neck_reduce_layers_0_bn_weight, ema_neck_reduce_layers_0_bn_bias, ema_neck_reduce_layers_0_bn_running_mean, ema_neck_reduce_layers_0_bn_r
unning_var, ema_neck_reduce_layers_0_bn_num_batches_tracked, ema_neck_reduce_layers_1_conv_weight, ema_neck_reduce_layers_1_bn_weight, ema_neck_reduce_layers_1_bn_bias, ema_neck_reduce_layers_1_bn_running_mean, ema_neck_reduce_layers_1_bn_running_var, ema_neck_reduce_layers_1_bn_num_batches_tracked, ema_neck_top_down_blocks_0_main_conv_conv_weight, ema_neck_top_down_blocks_0_main_conv_bn_weight, ema_neck_top_down_block
s_0_main_conv_bn_bias, ema_neck_top_down_blocks_0_main_conv_bn_running_mean, ema_neck_top_down_blocks_0_main_conv_bn_running_var, ema_neck_top_down_blocks_0_main_conv_bn_num_batches_tracked, ema_neck_top_down_blocks_0_short_conv_conv_weight, ema_neck_top_down_blocks_0_short_conv_bn_weight, ema_neck_top_down_blocks_0_short_conv_bn_bias, ema_neck_top_down_blocks_0_short_conv_bn_running_mean, ema_neck_top_down_blocks_0_sh
ort_conv_bn_running_var, ema_neck_top_down_blocks_0_short_conv_bn_num_batches_tracked, ema_neck_top_down_blocks_0_final_conv_conv_weight, ema_neck_top_down_blocks_0_final_conv_bn_weight, ema_neck_top_down_blocks_0_final_conv_bn_bias, ema_neck_top_down_blocks_0_final_conv_bn_running_mean, ema_neck_top_down_blocks_0_final_conv_bn_running_var, ema_neck_top_down_blocks_0_final_conv_bn_num_batches_tracked, ema_neck_top_down
_blocks_0_blocks_0_conv1_conv_weight, ema_neck_top_down_blocks_0_blocks_0_conv1_bn_weight, ema_neck_top_down_blocks_0_blocks_0_conv1_bn_bias, ema_neck_top_down_blocks_0_blocks_0_conv1_bn_running_mean, ema_neck_top_down_blocks_0_blocks_0_conv1_bn_running_var, ema_neck_top_down_blocks_0_blocks_0_conv1_bn_num_batches_tracked, ema_neck_top_down_blocks_0_blocks_0_conv2_conv_weight, ema_neck_top_down_blocks_0_blocks_0_conv2_
bn_weight, ema_neck_top_down_blocks_0_blocks_0_conv2_bn_bias, ema_neck_top_down_blocks_0_blocks_0_conv2_bn_running_mean, ema_neck_top_down_blocks_0_blocks_0_conv2_bn_running_var, ema_neck_top_down_blocks_0_blocks_0_conv2_bn_num_batches_tracked, ema_neck_top_down_blocks_0_blocks_1_conv1_conv_weight, ema_neck_top_down_blocks_0_blocks_1_conv1_bn_weight, ema_neck_top_down_blocks_0_blocks_1_conv1_bn_bias, ema_neck_top_down_
blocks_0_blocks_1_conv1_bn_running_mean, ema_neck_top_down_blocks_0_blocks_1_conv1_bn_running_var, ema_neck_top_down_blocks_0_blocks_1_conv1_bn_num_batches_tracked, ema_neck_top_down_blocks_0_blocks_1_conv2_conv_weight, ema_neck_top_down_blocks_0_blocks_1_conv2_bn_weight, ema_neck_top_down_blocks_0_blocks_1_conv2_bn_bias, ema_neck_top_down_blocks_0_blocks_1_conv2_bn_running_mean, ema_neck_top_down_blocks_0_blocks_1_con
v2_bn_running_var, ema_neck_top_down_blocks_0_blocks_1_conv2_bn_num_batches_tracked, ema_neck_top_down_blocks_0_blocks_2_conv1_conv_weight, ema_neck_top_down_blocks_0_blocks_2_conv1_bn_weight, ema_neck_top_down_blocks_0_blocks_2_conv1_bn_bias, ema_neck_top_down_blocks_0_blocks_2_conv1_bn_running_mean, ema_neck_top_down_blocks_0_blocks_2_conv1_bn_running_var, ema_neck_top_down_blocks_0_blocks_2_conv1_bn_num_batches_trac
ked, ema_neck_top_down_blocks_0_blocks_2_conv2_conv_weight, ema_neck_top_down_blocks_0_blocks_2_conv2_bn_weight, ema_neck_top_down_blocks_0_blocks_2_conv2_bn_bias, ema_neck_top_down_blocks_0_blocks_2_conv2_bn_running_mean, ema_neck_top_down_blocks_0_blocks_2_conv2_bn_running_var, ema_neck_top_down_blocks_0_blocks_2_conv2_bn_num_batches_tracked, ema_neck_top_down_blocks_1_main_conv_conv_weight, ema_neck_top_down_blocks_
1_main_conv_bn_weight, ema_neck_top_down_blocks_1_main_conv_bn_bias, ema_neck_top_down_blocks_1_main_conv_bn_running_mean, ema_neck_top_down_blocks_1_main_conv_bn_running_var, ema_neck_top_down_blocks_1_main_conv_bn_num_batches_tracked, ema_neck_top_down_blocks_1_short_conv_conv_weight, ema_neck_top_down_blocks_1_short_conv_bn_weight, ema_neck_top_down_blocks_1_short_conv_bn_bias, ema_neck_top_down_blocks_1_short_conv_
bn_running_mean, ema_neck_top_down_blocks_1_short_conv_bn_running_var, ema_neck_top_down_blocks_1_short_conv_bn_num_batches_tracked, ema_neck_top_down_blocks_1_final_conv_conv_weight, ema_neck_top_down_blocks_1_final_conv_bn_weight, ema_neck_top_down_blocks_1_final_conv_bn_bias, ema_neck_top_down_blocks_1_final_conv_bn_running_mean, ema_neck_top_down_blocks_1_final_conv_bn_running_var, ema_neck_top_down_blocks_1_final_
conv_bn_num_batches_tracked, ema_neck_top_down_blocks_1_blocks_0_conv1_conv_weight, ema_neck_top_down_blocks_1_blocks_0_conv1_bn_weight, ema_neck_top_down_blocks_1_blocks_0_conv1_bn_bias, ema_neck_top_down_blocks_1_blocks_0_conv1_bn_running_mean, ema_neck_top_down_blocks_1_blocks_0_conv1_bn_running_var, ema_neck_top_down_blocks_1_blocks_0_conv1_bn_num_batches_tracked, ema_neck_top_down_blocks_1_blocks_0_conv2_conv_weig
ht, ema_neck_top_down_blocks_1_blocks_0_conv2_bn_weight, ema_neck_top_down_blocks_1_blocks_0_conv2_bn_bias, ema_neck_top_down_blocks_1_blocks_0_conv2_bn_running_mean, ema_neck_top_down_blocks_1_blocks_0_conv2_bn_running_var, ema_neck_top_down_blocks_1_blocks_0_conv2_bn_num_batches_tracked, ema_neck_top_down_blocks_1_blocks_1_conv1_conv_weight, ema_neck_top_down_blocks_1_blocks_1_conv1_bn_weight, ema_neck_top_down_block
s_1_blocks_1_conv1_bn_bias, ema_neck_top_down_blocks_1_blocks_1_conv1_bn_running_mean, ema_neck_top_down_blocks_1_blocks_1_conv1_bn_running_var, ema_neck_top_down_blocks_1_blocks_1_conv1_bn_num_batches_tracked, ema_neck_top_down_blocks_1_blocks_1_conv2_conv_weight, ema_neck_top_down_blocks_1_blocks_1_conv2_bn_weight, ema_neck_top_down_blocks_1_blocks_1_conv2_bn_bias, ema_neck_top_down_blocks_1_blocks_1_conv2_bn_running
_mean, ema_neck_top_down_blocks_1_blocks_1_conv2_bn_running_var, ema_neck_top_down_blocks_1_blocks_1_conv2_bn_num_batches_tracked, ema_neck_top_down_blocks_1_blocks_2_conv1_conv_weight, ema_neck_top_down_blocks_1_blocks_2_conv1_bn_weight, ema_neck_top_down_blocks_1_blocks_2_conv1_bn_bias, ema_neck_top_down_blocks_1_blocks_2_conv1_bn_running_mean, ema_neck_top_down_blocks_1_blocks_2_conv1_bn_running_var, ema_neck_top_do
wn_blocks_1_blocks_2_conv1_bn_num_batches_tracked, ema_neck_top_down_blocks_1_blocks_2_conv2_conv_weight, ema_neck_top_down_blocks_1_blocks_2_conv2_bn_weight, ema_neck_top_down_blocks_1_blocks_2_conv2_bn_bias, ema_neck_top_down_blocks_1_blocks_2_conv2_bn_running_mean, ema_neck_top_down_blocks_1_blocks_2_conv2_bn_running_var, ema_neck_top_down_blocks_1_blocks_2_conv2_bn_num_batches_tracked, ema_neck_downsamples_0_conv_w
eight, ema_neck_downsamples_0_bn_weight, ema_neck_downsamples_0_bn_bias, ema_neck_downsamples_0_bn_running_mean, ema_neck_downsamples_0_bn_running_var, ema_neck_downsamples_0_bn_num_batches_tracked, ema_neck_downsamples_1_conv_weight, ema_neck_downsamples_1_bn_weight, ema_neck_downsamples_1_bn_bias, ema_neck_downsamples_1_bn_running_mean, ema_neck_downsamples_1_bn_running_var, ema_neck_downsamples_1_bn_num_batches_trac
ked, ema_neck_bottom_up_blocks_0_main_conv_conv_weight, ema_neck_bottom_up_blocks_0_main_conv_bn_weight, ema_neck_bottom_up_blocks_0_main_conv_bn_bias, ema_neck_bottom_up_blocks_0_main_conv_bn_running_mean, ema_neck_bottom_up_blocks_0_main_conv_bn_running_var, ema_neck_bottom_up_blocks_0_main_conv_bn_num_batches_tracked, ema_neck_bottom_up_blocks_0_short_conv_conv_weight, ema_neck_bottom_up_blocks_0_short_conv_bn_weigh
t, ema_neck_bottom_up_blocks_0_short_conv_bn_bias, ema_neck_bottom_up_blocks_0_short_conv_bn_running_mean, ema_neck_bottom_up_blocks_0_short_conv_bn_running_var, ema_neck_bottom_up_blocks_0_short_conv_bn_num_batches_tracked, ema_neck_bottom_up_blocks_0_final_conv_conv_weight, ema_neck_bottom_up_blocks_0_final_conv_bn_weight, ema_neck_bottom_up_blocks_0_final_conv_bn_bias, ema_neck_bottom_up_blocks_0_final_conv_bn_runni
ng_mean, ema_neck_bottom_up_blocks_0_final_conv_bn_running_var, ema_neck_bottom_up_blocks_0_final_conv_bn_num_batches_tracked, ema_neck_bottom_up_blocks_0_blocks_0_conv1_conv_weight, ema_neck_bottom_up_blocks_0_blocks_0_conv1_bn_weight, ema_neck_bottom_up_blocks_0_blocks_0_conv1_bn_bias, ema_neck_bottom_up_blocks_0_blocks_0_conv1_bn_running_mean, ema_neck_bottom_up_blocks_0_blocks_0_conv1_bn_running_var, ema_neck_botto
m_up_blocks_0_blocks_0_conv1_bn_num_batches_tracked, ema_neck_bottom_up_blocks_0_blocks_0_conv2_conv_weight, ema_neck_bottom_up_blocks_0_blocks_0_conv2_bn_weight, ema_neck_bottom_up_blocks_0_blocks_0_conv2_bn_bias, ema_neck_bottom_up_blocks_0_blocks_0_conv2_bn_running_mean, ema_neck_bottom_up_blocks_0_blocks_0_conv2_bn_running_var, ema_neck_bottom_up_blocks_0_blocks_0_conv2_bn_num_batches_tracked, ema_neck_bottom_up_bl
ocks_0_blocks_1_conv1_conv_weight, ema_neck_bottom_up_blocks_0_blocks_1_conv1_bn_weight, ema_neck_bottom_up_blocks_0_blocks_1_conv1_bn_bias, ema_neck_bottom_up_blocks_0_blocks_1_conv1_bn_running_mean, ema_neck_bottom_up_blocks_0_blocks_1_conv1_bn_running_var, ema_neck_bottom_up_blocks_0_blocks_1_conv1_bn_num_batches_tracked, ema_neck_bottom_up_blocks_0_blocks_1_conv2_conv_weight, ema_neck_bottom_up_blocks_0_blocks_1_co
nv2_bn_weight, ema_neck_bottom_up_blocks_0_blocks_1_conv2_bn_bias, ema_neck_bottom_up_blocks_0_blocks_1_conv2_bn_running_mean, ema_neck_bottom_up_blocks_0_blocks_1_conv2_bn_running_var, ema_neck_bottom_up_blocks_0_blocks_1_conv2_bn_num_batches_tracked, ema_neck_bottom_up_blocks_0_blocks_2_conv1_conv_weight, ema_neck_bottom_up_blocks_0_blocks_2_conv1_bn_weight, ema_neck_bottom_up_blocks_0_blocks_2_conv1_bn_bias, ema_nec
k_bottom_up_blocks_0_blocks_2_conv1_bn_running_mean, ema_neck_bottom_up_blocks_0_blocks_2_conv1_bn_running_var, ema_neck_bottom_up_blocks_0_blocks_2_conv1_bn_num_batches_tracked, ema_neck_bottom_up_blocks_0_blocks_2_conv2_conv_weight, ema_neck_bottom_up_blocks_0_blocks_2_conv2_bn_weight, ema_neck_bottom_up_blocks_0_blocks_2_conv2_bn_bias, ema_neck_bottom_up_blocks_0_blocks_2_conv2_bn_running_mean, ema_neck_bottom_up_bl
ocks_0_blocks_2_conv2_bn_running_var, ema_neck_bottom_up_blocks_0_blocks_2_conv2_bn_num_batches_tracked, ema_neck_bottom_up_blocks_1_main_conv_conv_weight, ema_neck_bottom_up_blocks_1_main_conv_bn_weight, ema_neck_bottom_up_blocks_1_main_conv_bn_bias, ema_neck_bottom_up_blocks_1_main_conv_bn_running_mean, ema_neck_bottom_up_blocks_1_main_conv_bn_running_var, ema_neck_bottom_up_blocks_1_main_conv_bn_num_batches_tracked,
 ema_neck_bottom_up_blocks_1_short_conv_conv_weight, ema_neck_bottom_up_blocks_1_short_conv_bn_weight, ema_neck_bottom_up_blocks_1_short_conv_bn_bias, ema_neck_bottom_up_blocks_1_short_conv_bn_running_mean, ema_neck_bottom_up_blocks_1_short_conv_bn_running_var, ema_neck_bottom_up_blocks_1_short_conv_bn_num_batches_tracked, ema_neck_bottom_up_blocks_1_final_conv_conv_weight, ema_neck_bottom_up_blocks_1_final_conv_bn_wei
ght, ema_neck_bottom_up_blocks_1_final_conv_bn_bias, ema_neck_bottom_up_blocks_1_final_conv_bn_running_mean, ema_neck_bottom_up_blocks_1_final_conv_bn_running_var, ema_neck_bottom_up_blocks_1_final_conv_bn_num_batches_tracked, ema_neck_bottom_up_blocks_1_blocks_0_conv1_conv_weight, ema_neck_bottom_up_blocks_1_blocks_0_conv1_bn_weight, ema_neck_bottom_up_blocks_1_blocks_0_conv1_bn_bias, ema_neck_bottom_up_blocks_1_block
s_0_conv1_bn_running_mean, ema_neck_bottom_up_blocks_1_blocks_0_conv1_bn_running_var, ema_neck_bottom_up_blocks_1_blocks_0_conv1_bn_num_batches_tracked, ema_neck_bottom_up_blocks_1_blocks_0_conv2_conv_weight, ema_neck_bottom_up_blocks_1_blocks_0_conv2_bn_weight, ema_neck_bottom_up_blocks_1_blocks_0_conv2_bn_bias, ema_neck_bottom_up_blocks_1_blocks_0_conv2_bn_running_mean, ema_neck_bottom_up_blocks_1_blocks_0_conv2_bn_r
unning_var, ema_neck_bottom_up_blocks_1_blocks_0_conv2_bn_num_batches_tracked, ema_neck_bottom_up_blocks_1_blocks_1_conv1_conv_weight, ema_neck_bottom_up_blocks_1_blocks_1_conv1_bn_weight, ema_neck_bottom_up_blocks_1_blocks_1_conv1_bn_bias, ema_neck_bottom_up_blocks_1_blocks_1_conv1_bn_running_mean, ema_neck_bottom_up_blocks_1_blocks_1_conv1_bn_running_var, ema_neck_bottom_up_blocks_1_blocks_1_conv1_bn_num_batches_trac
ked, ema_neck_bottom_up_blocks_1_blocks_1_conv2_conv_weight, ema_neck_bottom_up_blocks_1_blocks_1_conv2_bn_weight, ema_neck_bottom_up_blocks_1_blocks_1_conv2_bn_bias, ema_neck_bottom_up_blocks_1_blocks_1_conv2_bn_running_mean, ema_neck_bottom_up_blocks_1_blocks_1_conv2_bn_running_var, ema_neck_bottom_up_blocks_1_blocks_1_conv2_bn_num_batches_tracked, ema_neck_bottom_up_blocks_1_blocks_2_conv1_conv_weight, ema_neck_bott
om_up_blocks_1_blocks_2_conv1_bn_weight, ema_neck_bottom_up_blocks_1_blocks_2_conv1_bn_bias, ema_neck_bottom_up_blocks_1_blocks_2_conv1_bn_running_mean, ema_neck_bottom_up_blocks_1_blocks_2_conv1_bn_running_var, ema_neck_bottom_up_blocks_1_blocks_2_conv1_bn_num_batches_tracked, ema_neck_bottom_up_blocks_1_blocks_2_conv2_conv_weight, ema_neck_bottom_up_blocks_1_blocks_2_conv2_bn_weight, ema_neck_bottom_up_blocks_1_block
s_2_conv2_bn_bias, ema_neck_bottom_up_blocks_1_blocks_2_conv2_bn_running_mean, ema_neck_bottom_up_blocks_1_blocks_2_conv2_bn_running_var, ema_neck_bottom_up_blocks_1_blocks_2_conv2_bn_num_batches_tracked, ema_neck_out_convs_0_conv_weight, ema_neck_out_convs_0_bn_weight, ema_neck_out_convs_0_bn_bias, ema_neck_out_convs_0_bn_running_mean, ema_neck_out_convs_0_bn_running_var, ema_neck_out_convs_0_bn_num_batches_tracked, e
ma_neck_out_convs_1_conv_weight, ema_neck_out_convs_1_bn_weight, ema_neck_out_convs_1_bn_bias, ema_neck_out_convs_1_bn_running_mean, ema_neck_out_convs_1_bn_running_var, ema_neck_out_convs_1_bn_num_batches_tracked, ema_neck_out_convs_2_conv_weight, ema_neck_out_convs_2_bn_weight, ema_neck_out_convs_2_bn_bias, ema_neck_out_convs_2_bn_running_mean, ema_neck_out_convs_2_bn_running_var, ema_neck_out_convs_2_bn_num_batches_
tracked, ema_bbox_head_multi_level_cls_convs_0_0_conv_weight, ema_bbox_head_multi_level_cls_convs_0_0_bn_weight, ema_bbox_head_multi_level_cls_convs_0_0_bn_bias, ema_bbox_head_multi_level_cls_convs_0_0_bn_running_mean, ema_bbox_head_multi_level_cls_convs_0_0_bn_running_var, ema_bbox_head_multi_level_cls_convs_0_0_bn_num_batches_tracked, ema_bbox_head_multi_level_cls_convs_0_1_conv_weight, ema_bbox_head_multi_level_cls_
convs_0_1_bn_weight, ema_bbox_head_multi_level_cls_convs_0_1_bn_bias, ema_bbox_head_multi_level_cls_convs_0_1_bn_running_mean, ema_bbox_head_multi_level_cls_convs_0_1_bn_running_var, ema_bbox_head_multi_level_cls_convs_0_1_bn_num_batches_tracked, ema_bbox_head_multi_level_cls_convs_1_0_conv_weight, ema_bbox_head_multi_level_cls_convs_1_0_bn_weight, ema_bbox_head_multi_level_cls_convs_1_0_bn_bias, ema_bbox_head_multi_le
vel_cls_convs_1_0_bn_running_mean, ema_bbox_head_multi_level_cls_convs_1_0_bn_running_var, ema_bbox_head_multi_level_cls_convs_1_0_bn_num_batches_tracked, ema_bbox_head_multi_level_cls_convs_1_1_conv_weight, ema_bbox_head_multi_level_cls_convs_1_1_bn_weight, ema_bbox_head_multi_level_cls_convs_1_1_bn_bias, ema_bbox_head_multi_level_cls_convs_1_1_bn_running_mean, ema_bbox_head_multi_level_cls_convs_1_1_bn_running_var, e
ma_bbox_head_multi_level_cls_convs_1_1_bn_num_batches_tracked, ema_bbox_head_multi_level_cls_convs_2_0_conv_weight, ema_bbox_head_multi_level_cls_convs_2_0_bn_weight, ema_bbox_head_multi_level_cls_convs_2_0_bn_bias, ema_bbox_head_multi_level_cls_convs_2_0_bn_running_mean, ema_bbox_head_multi_level_cls_convs_2_0_bn_running_var, ema_bbox_head_multi_level_cls_convs_2_0_bn_num_batches_tracked, ema_bbox_head_multi_level_cls
_convs_2_1_conv_weight, ema_bbox_head_multi_level_cls_convs_2_1_bn_weight, ema_bbox_head_multi_level_cls_convs_2_1_bn_bias, ema_bbox_head_multi_level_cls_convs_2_1_bn_running_mean, ema_bbox_head_multi_level_cls_convs_2_1_bn_running_var, ema_bbox_head_multi_level_cls_convs_2_1_bn_num_batches_tracked, ema_bbox_head_multi_level_reg_convs_0_0_conv_weight, ema_bbox_head_multi_level_reg_convs_0_0_bn_weight, ema_bbox_head_mul
ti_level_reg_convs_0_0_bn_bias, ema_bbox_head_multi_level_reg_convs_0_0_bn_running_mean, ema_bbox_head_multi_level_reg_convs_0_0_bn_running_var, ema_bbox_head_multi_level_reg_convs_0_0_bn_num_batches_tracked, ema_bbox_head_multi_level_reg_convs_0_1_conv_weight, ema_bbox_head_multi_level_reg_convs_0_1_bn_weight, ema_bbox_head_multi_level_reg_convs_0_1_bn_bias, ema_bbox_head_multi_level_reg_convs_0_1_bn_running_mean, ema
_bbox_head_multi_level_reg_convs_0_1_bn_running_var, ema_bbox_head_multi_level_reg_convs_0_1_bn_num_batches_tracked, ema_bbox_head_multi_level_reg_convs_1_0_conv_weight, ema_bbox_head_multi_level_reg_convs_1_0_bn_weight, ema_bbox_head_multi_level_reg_convs_1_0_bn_bias, ema_bbox_head_multi_level_reg_convs_1_0_bn_running_mean, ema_bbox_head_multi_level_reg_convs_1_0_bn_running_var, ema_bbox_head_multi_level_reg_convs_1_0
_bn_num_batches_tracked, ema_bbox_head_multi_level_reg_convs_1_1_conv_weight, ema_bbox_head_multi_level_reg_convs_1_1_bn_weight, ema_bbox_head_multi_level_reg_convs_1_1_bn_bias, ema_bbox_head_multi_level_reg_convs_1_1_bn_running_mean, ema_bbox_head_multi_level_reg_convs_1_1_bn_running_var, ema_bbox_head_multi_level_reg_convs_1_1_bn_num_batches_tracked, ema_bbox_head_multi_level_reg_convs_2_0_conv_weight, ema_bbox_head_
multi_level_reg_convs_2_0_bn_weight, ema_bbox_head_multi_level_reg_convs_2_0_bn_bias, ema_bbox_head_multi_level_reg_convs_2_0_bn_running_mean, ema_bbox_head_multi_level_reg_convs_2_0_bn_running_var, ema_bbox_head_multi_level_reg_convs_2_0_bn_num_batches_tracked, ema_bbox_head_multi_level_reg_convs_2_1_conv_weight, ema_bbox_head_multi_level_reg_convs_2_1_bn_weight, ema_bbox_head_multi_level_reg_convs_2_1_bn_bias, ema_bb
ox_head_multi_level_reg_convs_2_1_bn_running_mean, ema_bbox_head_multi_level_reg_convs_2_1_bn_running_var, ema_bbox_head_multi_level_reg_convs_2_1_bn_num_batches_tracked, ema_bbox_head_multi_level_conv_cls_0_weight, ema_bbox_head_multi_level_conv_cls_0_bias, ema_bbox_head_multi_level_conv_cls_1_weight, ema_bbox_head_multi_level_conv_cls_1_bias, ema_bbox_head_multi_level_conv_cls_2_weight, ema_bbox_head_multi_level_conv
_cls_2_bias, ema_bbox_head_multi_level_conv_reg_0_weight, ema_bbox_head_multi_level_conv_reg_0_bias, ema_bbox_head_multi_level_conv_reg_1_weight, ema_bbox_head_multi_level_conv_reg_1_bias, ema_bbox_head_multi_level_conv_reg_2_weight, ema_bbox_head_multi_level_conv_reg_2_bias, ema_bbox_head_multi_level_conv_obj_0_weight, ema_bbox_head_multi_level_conv_obj_0_bias, ema_bbox_head_multi_level_conv_obj_1_weight, ema_bbox_head_multi_level_conv_obj_1_bias, ema_bbox_head_multi_level_conv_obj_2_weight, ema_bbox_head_multi_level_conv_obj_2_bias

Registry:{}
Registry:{'img_scale': (640, 640), 'flip': False, 'transforms': [{'type': 'Resize', 'keep_ratio': True}, {'type': 'RandomFlip'}, {'type': 'Pad', 'pad_to_square': True, 'pad_val': {'img': (114.0, 114.0, 114.0)}}, {'type': 'DefaultFormatBundle'}, {'type': 'Collect', 'keys': ['img']}]}
Registry:{'keep_ratio': True}
Registry:{}
Registry:{'pad_to_square': True, 'pad_val': {'img': (114.0, 114.0, 114.0)}}
Registry:{}
Registry:{'keys': ['img']}
2022-07-21 14:54:02,764 - mmdeploy - WARNING - DeprecationWarning: get_onnx_config will be deprecated in the future. 
2022-07-21 14:54:02,764 - mmdeploy - INFO - Export PyTorch model to ONNX: /static/work_dirs/bcccd9e0-41a1-408d-9dfa-f4e634e9608c\end2end.onnx.
2022-07-21 14:54:03,983 - mmdeploy - WARNING - Can not find torch._C._jit_pass_onnx_deduplicate_initializers, function rewrite will not be applied
d:\mmdeploy\mmdeploy\core\optimizers\function_marker.py:158: TracerWarning: Converting a tensor to a Python integer might cause the trace to be incorrect. We can't record the data flow of Python values, so this value will be treated as a constant in the future. This means that the trace might not generalize to other inputs!
  ys_shape = tuple(int(s) for s in ys.shape)
D:\Anaconda3\envs\aoc\lib\site-packages\torch\functional.py:568: UserWarning: torch.meshgrid: in an upcoming release, it will be required to pass the indexing argument. (Triggered internally at  C:\actions-runner\_work\pytorch\pytorch\builder\windows\pytorch\aten\src\ATen\native\TensorShape.cpp:2228.)
  return _VF.meshgrid(tensors, **kwargs)  # type: ignore[attr-defined]
d:\mmdeploy\mmdeploy\codebase\mmdet\core\post_processing\bbox_nms.py:259: TracerWarning: Converting a tensor to a Python integer might cause the trace to be incorrect. We can't record the data flow of Python values, so this value will be treated as a constant in the future. This means that the trace might not generalize to other inputs!
  dets, labels = TRTBatchedNMSop.apply(boxes, scores, int(scores.shape[-1]),
d:\mmdeploy\mmdeploy\mmcv\ops\nms.py:178: TracerWarning: Converting a tensor to a Python boolean might cause the trace to be incorrect. We can't record the data flow of Python values, so this value will be treated as a constant in the future. This means that the trace might not generalize to other inputs!
  out_boxes = min(num_boxes, after_topk)
WARNING: The shape inference of mmdeploy::TRTBatchedNMS type is missing, so it may result in wrong shape inference for the exported graph. Please consider adding it in symbolic function.
WARNING: The shape inference of mmdeploy::TRTBatchedNMS type is missing, so it may result in wrong shape inference for the exported graph. Please consider adding it in symbolic function.
WARNING: The shape inference of mmdeploy::TRTBatchedNMS type is missing, so it may result in wrong shape inference for the exported graph. Please consider adding it in symbolic function.
WARNING: The shape inference of mmdeploy::TRTBatchedNMS type is missing, so it may result in wrong shape inference for the exported graph. Please consider adding it in symbolic function.
WARNING: The shape inference of mmdeploy::TRTBatchedNMS type is missing, so it may result in wrong shape inference for the exported graph. Please consider adding it in symbolic function.
WARNING: The shape inference of mmdeploy::TRTBatchedNMS type is missing, so it may result in wrong shape inference for the exported graph. Please consider adding it in symbolic function.
2022-07-21 14:54:20,884 - mmdeploy - INFO - Execute onnx optimize passes.
2022-07-21 14:54:20,884 - mmdeploy - WARNING - Can not optimize model, please build torchscipt extension.
More details: https://github.com/open-mmlab/mmdeploy/blob/master/docs/en/experimental/onnx_optimizer.md
2022-07-21 14:54:25,433 - mmdeploy - INFO - Start pipeline mmdeploy.backend.tensorrt.onnx2tensorrt.onnx2tensorrt in subprocess
2022-07-21 14:54:25,609 - mmdeploy - WARNING - Could not load the library of tensorrt plugins.             Because the file does not exist: 
[07/21/2022-14:54:25] [TRT] [I] [MemUsageChange] Init CUDA: CPU +221, GPU +0, now: CPU 13566, GPU 990 (MiB)
[07/21/2022-14:54:27] [TRT] [I] [MemUsageChange] Init builder kernel library: CPU +4, GPU +2, now: CPU 13757, GPU 992 (MiB)
[07/21/2022-14:54:27] [TRT] [W] onnx2trt_utils.cpp:369: Your ONNX model has been generated with INT64 weights, while TensorRT does not natively support INT64. Attempting to cast down to INT32.
[07/21/2022-14:54:27] [TRT] [W] onnx2trt_utils.cpp:395: One or more weights outside the range of INT32 was clamped
[07/21/2022-14:54:28] [TRT] [W] onnx2trt_utils.cpp:395: One or more weights outside the range of INT32 was clamped
[07/21/2022-14:54:28] [TRT] [W] onnx2trt_utils.cpp:395: One or more weights outside the range of INT32 was clamped
[07/21/2022-14:54:28] [TRT] [I] No importer registered for op: TRTBatchedNMS. Attempting to import as plugin.
[07/21/2022-14:54:28] [TRT] [I] Searching for plugin: TRTBatchedNMS, plugin_version: 1, plugin_namespace:
Process Process-3:
Traceback (most recent call last):
  File "D:\Anaconda3\envs\aoc\lib\multiprocessing\process.py", line 315, in _bootstrap
    self.run()
  File "D:\Anaconda3\envs\aoc\lib\multiprocessing\process.py", line 108, in run
    self._target(*self._args, **self._kwargs)
  File "d:\mmdeploy\mmdeploy\apis\core\pipeline_manager.py", line 107, in __call__
    ret = func(*args, **kwargs)
  File "d:\mmdeploy\mmdeploy\backend\tensorrt\onnx2tensorrt.py", line 79, in onnx2tensorrt
    from_onnx(
  File "d:\mmdeploy\mmdeploy\backend\tensorrt\utils.py", line 113, in from_onnx
    raise RuntimeError(f'Failed to parse onnx, {error_msgs}')
RuntimeError: Failed to parse onnx, In node 716 (importFallbackPluginImporter): UNSUPPORTED_NODE: Assertion failed: creator && "Plugin not found, are the plugin name, version, and namespace correct?"

Please use --dump-info when running tools/deploy.py. And you are using ONNXRuntime backend now? As the bug fixed already, you may try TensorRT.

@AllentDan
Copy link
Member

You need build MMDeploy from source. There is also another quick methods if you want to use prebuilt MMDeploy package.
Change the function mmdet.core.anchor.MlvlPointGenerator.single_level_grid_priors of MMDet. Change the line from:

            stride_w = shift_xx.new_full((shift_xx.shape[0], ),
                                         stride_w).to(dtype)
            stride_h = shift_xx.new_full((shift_yy.shape[0], ),
                                         stride_h).to(dtype)

to

            stride_w = shift_xx.new_full((feat_h*feat_w, ),
                                         stride_w).to(dtype)
            stride_h = shift_xx.new_full((feat_h*feat_w, ),
                                         stride_h).to(dtype)

@gzxy-0102
Copy link
Author

I just compiled MMDeploy from the source code of the master branch

@AllentDan
Copy link
Member

As the warning of your log says Could not load the library of tensorrt plugins. Because the file does not exist: . Make sure there are libs inside build/bin

@gzxy-0102
Copy link
Author

I will check the compile options and log files
Confirm correct installation

@AllentDan
Copy link
Member

Cool

@gzxy-0102
Copy link
Author

when i recompile mmdeploy i got an error

it says can't find loader.cpp.in but loader.cpp.in file exists in cmake directory

(aoc) PS D:\mmdeploy\build> cmake .. -G "Visual Studio 16 2019" -A x64 -T v142 -DTENSORRT_DIR="D:\TensorRT\8.4.1.5" -DCUDNN_DIR="D:\CUDAToolkit\lib\x64" -DMMDEPLOY_BUILD_SDK="ON" -DMMDEPLOY_TARGET_DEVICES="cpu,cuda" -DMMDEPLOY_TARGET_BACKENDS="ort,trt" -DMMDEPLOY_CODEBASES="all" -DMMDEPLOY_BUILD_SDK_PYTHON_API="ON"
-- CMAKE_INSTALL_PREFIX: D:/mmdeploy/build/install
-- The C compiler identification is MSVC 19.29.30145.0
-- The CXX compiler identification is MSVC 19.29.30145.0
-- Check for working C compiler: D:/Microsoft Visual Studio/2019/Community/VC/Tools/MSVC/14.29.30133/bin/Hostx64/x64/cl.exe
-- Check for working C compiler: D:/Microsoft Visual Studio/2019/Community/VC/Tools/MSVC/14.29.30133/bin/Hostx64/x64/cl.exe -- works
-- Detecting C compiler ABI info
-- Detecting C compiler ABI info - done
-- Detecting C compile features
-- Detecting C compile features - done
-- Check for working CXX compiler: D:/Microsoft Visual Studio/2019/Community/VC/Tools/MSVC/14.29.30133/bin/Hostx64/x64/cl.exe
-- Check for working CXX compiler: D:/Microsoft Visual Studio/2019/Community/VC/Tools/MSVC/14.29.30133/bin/Hostx64/x64/cl.exe -- works
-- Detecting CXX compiler ABI info
-- Detecting CXX compiler ABI info - done
-- Detecting CXX compile features
-- Detecting CXX compile features - done
-- OpenCV ARCH: x64
-- OpenCV RUNTIME: vc15
-- OpenCV STATIC: OFF
-- Found OpenCV: D:/opencv/build (found version "4.6.0")
-- Found OpenCV 4.6.0 in D:/opencv/build/x64/vc15/lib
-- You might need to add D:\opencv\build\x64\vc15\bin to your PATH to be able to run your applications.
-- Build spdlog: 1.10.0
-- Looking for pthread.h
-- Looking for pthread.h - not found
-- Found Threads: TRUE
-- Build type: Release
-- build codebase: mmcls
-- build codebase: mmdet
-- build codebase: mmseg
-- build codebase: mmocr
-- build codebase: mmedit
-- build codebase: mmpose
-- build codebase: mmrotate
-- pybind11 v2.9.0 dev1
-- Found PythonInterp: D:/Anaconda3/envs/aoc/python.exe (found version "3.9")
-- Found PythonLibs: D:/Anaconda3/envs/aoc/libs/python39.lib
-- Performing Test HAS_MSVC_GL_LTCG
-- Performing Test HAS_MSVC_GL_LTCG - Success
CMake Error: File /loader.cpp.in does not exist.
CMake Error at cmake/MMDeploy.cmake:155 (configure_file):
  configure_file Problem configuring file
Call Stack (most recent call first):
  csrc/mmdeploy/apis/python/CMakeLists.txt:25 (mmdeploy_load_dynamic)


-- Configuring incomplete, errors occurred!
See also "D:/mmdeploy/build/CMakeFiles/CMakeOutput.log".
See also "D:/mmdeploy/build/CMakeFiles/CMakeError.log".

@AllentDan
Copy link
Member

@irexyc Hi, could you kindly give some help?

@irexyc
Copy link
Collaborator

irexyc commented Jul 22, 2022

The problem is due to these line: https://github.com/open-mmlab/mmdeploy/blob/master/cmake/MMDeploy.cmake#L153-L157

What is your cmake version? It seems like your cmake doesn't detect the right ${CMAKE_CURRENT_FUNCTION_LIST_DIR}

@gzxy-0102
Copy link
Author

The problem is due to these line: https://github.com/open-mmlab/mmdeploy/blob/master/cmake/MMDeploy.cmake#L153-L157

What is your cmake version? It seems like your cmake doesn't detect the right ${CMAKE_CURRENT_FUNCTION_LIST_DIR}

oh~ my bad
I looked at the cmake file. my cmake version does not match. thank you

@irexyc
Copy link
Collaborator

irexyc commented Jul 22, 2022

And the var in list should seperate by ;

-DMMDEPLOY_TARGET_DEVICES="cpu;cuda"
-DMMDEPLOY_TARGET_BACKENDS="ort;trt"

@gzxy-0102
Copy link
Author

@AllentDan Hi. I was rebuild, it still gives the same error

2022-07-22 14:11:15,848 - mmdeploy - INFO - 当前任务ID:f65b4ca8-11ae-4714-bf1b-5cf3c35ec715

load checkpoint from local path: D:\static\work_dirs\f65b4ca8-11ae-4714-bf1b-5cf3c35ec715\best_bbox_mAP_epoch_42.pth
The model and loaded state dict do not match exactly

unexpected key in source state_dict: ema_backbone_stem_conv_conv_weight, ema_backbone_stem_conv_bn_weight, ema_backbone_stem_conv_bn_bias, ema_backbone_stem_conv_bn_running_mean, ema_backbone_stem_conv_bn_running_var, ema_backbone_stem_conv_bn_num_batches_tracked, ema_backbone_stage1_0_conv_weight, ema_backbone_stage1_0_bn_weight, ema_backbone_stage1_0_bn_bias, ema_backbone_stage1_0_bn_running_mean, ema_backbone_stage1
_0_bn_running_var, ema_backbone_stage1_0_bn_num_batches_tracked, ema_backbone_stage1_1_main_conv_conv_weight, ema_backbone_stage1_1_main_conv_bn_weight, ema_backbone_stage1_1_main_conv_bn_bias, ema_backbone_stage1_1_main_conv_bn_running_mean, ema_backbone_stage1_1_main_conv_bn_running_var, ema_backbone_stage1_1_main_conv_bn_num_batches_tracked, ema_backbone_stage1_1_short_conv_conv_weight, ema_backbone_stage1_1_short_c
onv_bn_weight, ema_backbone_stage1_1_short_conv_bn_bias, ema_backbone_stage1_1_short_conv_bn_running_mean, ema_backbone_stage1_1_short_conv_bn_running_var, ema_backbone_stage1_1_short_conv_bn_num_batches_tracked, ema_backbone_stage1_1_final_conv_conv_weight, ema_backbone_stage1_1_final_conv_bn_weight, ema_backbone_stage1_1_final_conv_bn_bias, ema_backbone_stage1_1_final_conv_bn_running_mean, ema_backbone_stage1_1_final
_conv_bn_running_var, ema_backbone_stage1_1_final_conv_bn_num_batches_tracked, ema_backbone_stage1_1_blocks_0_conv1_conv_weight, ema_backbone_stage1_1_blocks_0_conv1_bn_weight, ema_backbone_stage1_1_blocks_0_conv1_bn_bias, ema_backbone_stage1_1_blocks_0_conv1_bn_running_mean, ema_backbone_stage1_1_blocks_0_conv1_bn_running_var, ema_backbone_stage1_1_blocks_0_conv1_bn_num_batches_tracked, ema_backbone_stage1_1_blocks_0_
conv2_conv_weight, ema_backbone_stage1_1_blocks_0_conv2_bn_weight, ema_backbone_stage1_1_blocks_0_conv2_bn_bias, ema_backbone_stage1_1_blocks_0_conv2_bn_running_mean, ema_backbone_stage1_1_blocks_0_conv2_bn_running_var, ema_backbone_stage1_1_blocks_0_conv2_bn_num_batches_tracked, ema_backbone_stage1_1_blocks_1_conv1_conv_weight, ema_backbone_stage1_1_blocks_1_conv1_bn_weight, ema_backbone_stage1_1_blocks_1_conv1_bn_bia
s, ema_backbone_stage1_1_blocks_1_conv1_bn_running_mean, ema_backbone_stage1_1_blocks_1_conv1_bn_running_var, ema_backbone_stage1_1_blocks_1_conv1_bn_num_batches_tracked, ema_backbone_stage1_1_blocks_1_conv2_conv_weight, ema_backbone_stage1_1_blocks_1_conv2_bn_weight, ema_backbone_stage1_1_blocks_1_conv2_bn_bias, ema_backbone_stage1_1_blocks_1_conv2_bn_running_mean, ema_backbone_stage1_1_blocks_1_conv2_bn_running_var, 
ema_backbone_stage1_1_blocks_1_conv2_bn_num_batches_tracked, ema_backbone_stage1_1_blocks_2_conv1_conv_weight, ema_backbone_stage1_1_blocks_2_conv1_bn_weight, ema_backbone_stage1_1_blocks_2_conv1_bn_bias, ema_backbone_stage1_1_blocks_2_conv1_bn_running_mean, ema_backbone_stage1_1_blocks_2_conv1_bn_running_var, ema_backbone_stage1_1_blocks_2_conv1_bn_num_batches_tracked, ema_backbone_stage1_1_blocks_2_conv2_conv_weight,
 ema_backbone_stage1_1_blocks_2_conv2_bn_weight, ema_backbone_stage1_1_blocks_2_conv2_bn_bias, ema_backbone_stage1_1_blocks_2_conv2_bn_running_mean, ema_backbone_stage1_1_blocks_2_conv2_bn_running_var, ema_backbone_stage1_1_blocks_2_conv2_bn_num_batches_tracked, ema_backbone_stage2_0_conv_weight, ema_backbone_stage2_0_bn_weight, ema_backbone_stage2_0_bn_bias, ema_backbone_stage2_0_bn_running_mean, ema_backbone_stage2_0
_bn_running_var, ema_backbone_stage2_0_bn_num_batches_tracked, ema_backbone_stage2_1_main_conv_conv_weight, ema_backbone_stage2_1_main_conv_bn_weight, ema_backbone_stage2_1_main_conv_bn_bias, ema_backbone_stage2_1_main_conv_bn_running_mean, ema_backbone_stage2_1_main_conv_bn_running_var, ema_backbone_stage2_1_main_conv_bn_num_batches_tracked, ema_backbone_stage2_1_short_conv_conv_weight, ema_backbone_stage2_1_short_con
v_bn_weight, ema_backbone_stage2_1_short_conv_bn_bias, ema_backbone_stage2_1_short_conv_bn_running_mean, ema_backbone_stage2_1_short_conv_bn_running_var, ema_backbone_stage2_1_short_conv_bn_num_batches_tracked, ema_backbone_stage2_1_final_conv_conv_weight, ema_backbone_stage2_1_final_conv_bn_weight, ema_backbone_stage2_1_final_conv_bn_bias, ema_backbone_stage2_1_final_conv_bn_running_mean, ema_backbone_stage2_1_final_c
onv_bn_running_var, ema_backbone_stage2_1_final_conv_bn_num_batches_tracked, ema_backbone_stage2_1_blocks_0_conv1_conv_weight, ema_backbone_stage2_1_blocks_0_conv1_bn_weight, ema_backbone_stage2_1_blocks_0_conv1_bn_bias, ema_backbone_stage2_1_blocks_0_conv1_bn_running_mean, ema_backbone_stage2_1_blocks_0_conv1_bn_running_var, ema_backbone_stage2_1_blocks_0_conv1_bn_num_batches_tracked, ema_backbone_stage2_1_blocks_0_co
nv2_conv_weight, ema_backbone_stage2_1_blocks_0_conv2_bn_weight, ema_backbone_stage2_1_blocks_0_conv2_bn_bias, ema_backbone_stage2_1_blocks_0_conv2_bn_running_mean, ema_backbone_stage2_1_blocks_0_conv2_bn_running_var, ema_backbone_stage2_1_blocks_0_conv2_bn_num_batches_tracked, ema_backbone_stage2_1_blocks_1_conv1_conv_weight, ema_backbone_stage2_1_blocks_1_conv1_bn_weight, ema_backbone_stage2_1_blocks_1_conv1_bn_bias,
 ema_backbone_stage2_1_blocks_1_conv1_bn_running_mean, ema_backbone_stage2_1_blocks_1_conv1_bn_running_var, ema_backbone_stage2_1_blocks_1_conv1_bn_num_batches_tracked, ema_backbone_stage2_1_blocks_1_conv2_conv_weight, ema_backbone_stage2_1_blocks_1_conv2_bn_weight, ema_backbone_stage2_1_blocks_1_conv2_bn_bias, ema_backbone_stage2_1_blocks_1_conv2_bn_running_mean, ema_backbone_stage2_1_blocks_1_conv2_bn_running_var, em
a_backbone_stage2_1_blocks_1_conv2_bn_num_batches_tracked, ema_backbone_stage2_1_blocks_2_conv1_conv_weight, ema_backbone_stage2_1_blocks_2_conv1_bn_weight, ema_backbone_stage2_1_blocks_2_conv1_bn_bias, ema_backbone_stage2_1_blocks_2_conv1_bn_running_mean, ema_backbone_stage2_1_blocks_2_conv1_bn_running_var, ema_backbone_stage2_1_blocks_2_conv1_bn_num_batches_tracked, ema_backbone_stage2_1_blocks_2_conv2_conv_weight, e
ma_backbone_stage2_1_blocks_2_conv2_bn_weight, ema_backbone_stage2_1_blocks_2_conv2_bn_bias, ema_backbone_stage2_1_blocks_2_conv2_bn_running_mean, ema_backbone_stage2_1_blocks_2_conv2_bn_running_var, ema_backbone_stage2_1_blocks_2_conv2_bn_num_batches_tracked, ema_backbone_stage2_1_blocks_3_conv1_conv_weight, ema_backbone_stage2_1_blocks_3_conv1_bn_weight, ema_backbone_stage2_1_blocks_3_conv1_bn_bias, ema_backbone_stag
e2_1_blocks_3_conv1_bn_running_mean, ema_backbone_stage2_1_blocks_3_conv1_bn_running_var, ema_backbone_stage2_1_blocks_3_conv1_bn_num_batches_tracked, ema_backbone_stage2_1_blocks_3_conv2_conv_weight, ema_backbone_stage2_1_blocks_3_conv2_bn_weight, ema_backbone_stage2_1_blocks_3_conv2_bn_bias, ema_backbone_stage2_1_blocks_3_conv2_bn_running_mean, ema_backbone_stage2_1_blocks_3_conv2_bn_running_var, ema_backbone_stage2_
1_blocks_3_conv2_bn_num_batches_tracked, ema_backbone_stage2_1_blocks_4_conv1_conv_weight, ema_backbone_stage2_1_blocks_4_conv1_bn_weight, ema_backbone_stage2_1_blocks_4_conv1_bn_bias, ema_backbone_stage2_1_blocks_4_conv1_bn_running_mean, ema_backbone_stage2_1_blocks_4_conv1_bn_running_var, ema_backbone_stage2_1_blocks_4_conv1_bn_num_batches_tracked, ema_backbone_stage2_1_blocks_4_conv2_conv_weight, ema_backbone_stage2
_1_blocks_4_conv2_bn_weight, ema_backbone_stage2_1_blocks_4_conv2_bn_bias, ema_backbone_stage2_1_blocks_4_conv2_bn_running_mean, ema_backbone_stage2_1_blocks_4_conv2_bn_running_var, ema_backbone_stage2_1_blocks_4_conv2_bn_num_batches_tracked, ema_backbone_stage2_1_blocks_5_conv1_conv_weight, ema_backbone_stage2_1_blocks_5_conv1_bn_weight, ema_backbone_stage2_1_blocks_5_conv1_bn_bias, ema_backbone_stage2_1_blocks_5_conv
1_bn_running_mean, ema_backbone_stage2_1_blocks_5_conv1_bn_running_var, ema_backbone_stage2_1_blocks_5_conv1_bn_num_batches_tracked, ema_backbone_stage2_1_blocks_5_conv2_conv_weight, ema_backbone_stage2_1_blocks_5_conv2_bn_weight, ema_backbone_stage2_1_blocks_5_conv2_bn_bias, ema_backbone_stage2_1_blocks_5_conv2_bn_running_mean, ema_backbone_stage2_1_blocks_5_conv2_bn_running_var, ema_backbone_stage2_1_blocks_5_conv2_b
n_num_batches_tracked, ema_backbone_stage2_1_blocks_6_conv1_conv_weight, ema_backbone_stage2_1_blocks_6_conv1_bn_weight, ema_backbone_stage2_1_blocks_6_conv1_bn_bias, ema_backbone_stage2_1_blocks_6_conv1_bn_running_mean, ema_backbone_stage2_1_blocks_6_conv1_bn_running_var, ema_backbone_stage2_1_blocks_6_conv1_bn_num_batches_tracked, ema_backbone_stage2_1_blocks_6_conv2_conv_weight, ema_backbone_stage2_1_blocks_6_conv2_
bn_weight, ema_backbone_stage2_1_blocks_6_conv2_bn_bias, ema_backbone_stage2_1_blocks_6_conv2_bn_running_mean, ema_backbone_stage2_1_blocks_6_conv2_bn_running_var, ema_backbone_stage2_1_blocks_6_conv2_bn_num_batches_tracked, ema_backbone_stage2_1_blocks_7_conv1_conv_weight, ema_backbone_stage2_1_blocks_7_conv1_bn_weight, ema_backbone_stage2_1_blocks_7_conv1_bn_bias, ema_backbone_stage2_1_blocks_7_conv1_bn_running_mean,
 ema_backbone_stage2_1_blocks_7_conv1_bn_running_var, ema_backbone_stage2_1_blocks_7_conv1_bn_num_batches_tracked, ema_backbone_stage2_1_blocks_7_conv2_conv_weight, ema_backbone_stage2_1_blocks_7_conv2_bn_weight, ema_backbone_stage2_1_blocks_7_conv2_bn_bias, ema_backbone_stage2_1_blocks_7_conv2_bn_running_mean, ema_backbone_stage2_1_blocks_7_conv2_bn_running_var, ema_backbone_stage2_1_blocks_7_conv2_bn_num_batches_trac
ked, ema_backbone_stage2_1_blocks_8_conv1_conv_weight, ema_backbone_stage2_1_blocks_8_conv1_bn_weight, ema_backbone_stage2_1_blocks_8_conv1_bn_bias, ema_backbone_stage2_1_blocks_8_conv1_bn_running_mean, ema_backbone_stage2_1_blocks_8_conv1_bn_running_var, ema_backbone_stage2_1_blocks_8_conv1_bn_num_batches_tracked, ema_backbone_stage2_1_blocks_8_conv2_conv_weight, ema_backbone_stage2_1_blocks_8_conv2_bn_weight, ema_bac
kbone_stage2_1_blocks_8_conv2_bn_bias, ema_backbone_stage2_1_blocks_8_conv2_bn_running_mean, ema_backbone_stage2_1_blocks_8_conv2_bn_running_var, ema_backbone_stage2_1_blocks_8_conv2_bn_num_batches_tracked, ema_backbone_stage3_0_conv_weight, ema_backbone_stage3_0_bn_weight, ema_backbone_stage3_0_bn_bias, ema_backbone_stage3_0_bn_running_mean, ema_backbone_stage3_0_bn_running_var, ema_backbone_stage3_0_bn_num_batches_tr
acked, ema_backbone_stage3_1_main_conv_conv_weight, ema_backbone_stage3_1_main_conv_bn_weight, ema_backbone_stage3_1_main_conv_bn_bias, ema_backbone_stage3_1_main_conv_bn_running_mean, ema_backbone_stage3_1_main_conv_bn_running_var, ema_backbone_stage3_1_main_conv_bn_num_batches_tracked, ema_backbone_stage3_1_short_conv_conv_weight, ema_backbone_stage3_1_short_conv_bn_weight, ema_backbone_stage3_1_short_conv_bn_bias, e
ma_backbone_stage3_1_short_conv_bn_running_mean, ema_backbone_stage3_1_short_conv_bn_running_var, ema_backbone_stage3_1_short_conv_bn_num_batches_tracked, ema_backbone_stage3_1_final_conv_conv_weight, ema_backbone_stage3_1_final_conv_bn_weight, ema_backbone_stage3_1_final_conv_bn_bias, ema_backbone_stage3_1_final_conv_bn_running_mean, ema_backbone_stage3_1_final_conv_bn_running_var, ema_backbone_stage3_1_final_conv_bn_
num_batches_tracked, ema_backbone_stage3_1_blocks_0_conv1_conv_weight, ema_backbone_stage3_1_blocks_0_conv1_bn_weight, ema_backbone_stage3_1_blocks_0_conv1_bn_bias, ema_backbone_stage3_1_blocks_0_conv1_bn_running_mean, ema_backbone_stage3_1_blocks_0_conv1_bn_running_var, ema_backbone_stage3_1_blocks_0_conv1_bn_num_batches_tracked, ema_backbone_stage3_1_blocks_0_conv2_conv_weight, ema_backbone_stage3_1_blocks_0_conv2_bn
_weight, ema_backbone_stage3_1_blocks_0_conv2_bn_bias, ema_backbone_stage3_1_blocks_0_conv2_bn_running_mean, ema_backbone_stage3_1_blocks_0_conv2_bn_running_var, ema_backbone_stage3_1_blocks_0_conv2_bn_num_batches_tracked, ema_backbone_stage3_1_blocks_1_conv1_conv_weight, ema_backbone_stage3_1_blocks_1_conv1_bn_weight, ema_backbone_stage3_1_blocks_1_conv1_bn_bias, ema_backbone_stage3_1_blocks_1_conv1_bn_running_mean, e
ma_backbone_stage3_1_blocks_1_conv1_bn_running_var, ema_backbone_stage3_1_blocks_1_conv1_bn_num_batches_tracked, ema_backbone_stage3_1_blocks_1_conv2_conv_weight, ema_backbone_stage3_1_blocks_1_conv2_bn_weight, ema_backbone_stage3_1_blocks_1_conv2_bn_bias, ema_backbone_stage3_1_blocks_1_conv2_bn_running_mean, ema_backbone_stage3_1_blocks_1_conv2_bn_running_var, ema_backbone_stage3_1_blocks_1_conv2_bn_num_batches_tracke
d, ema_backbone_stage3_1_blocks_2_conv1_conv_weight, ema_backbone_stage3_1_blocks_2_conv1_bn_weight, ema_backbone_stage3_1_blocks_2_conv1_bn_bias, ema_backbone_stage3_1_blocks_2_conv1_bn_running_mean, ema_backbone_stage3_1_blocks_2_conv1_bn_running_var, ema_backbone_stage3_1_blocks_2_conv1_bn_num_batches_tracked, ema_backbone_stage3_1_blocks_2_conv2_conv_weight, ema_backbone_stage3_1_blocks_2_conv2_bn_weight, ema_backb
one_stage3_1_blocks_2_conv2_bn_bias, ema_backbone_stage3_1_blocks_2_conv2_bn_running_mean, ema_backbone_stage3_1_blocks_2_conv2_bn_running_var, ema_backbone_stage3_1_blocks_2_conv2_bn_num_batches_tracked, ema_backbone_stage3_1_blocks_3_conv1_conv_weight, ema_backbone_stage3_1_blocks_3_conv1_bn_weight, ema_backbone_stage3_1_blocks_3_conv1_bn_bias, ema_backbone_stage3_1_blocks_3_conv1_bn_running_mean, ema_backbone_stage3
_1_blocks_3_conv1_bn_running_var, ema_backbone_stage3_1_blocks_3_conv1_bn_num_batches_tracked, ema_backbone_stage3_1_blocks_3_conv2_conv_weight, ema_backbone_stage3_1_blocks_3_conv2_bn_weight, ema_backbone_stage3_1_blocks_3_conv2_bn_bias, ema_backbone_stage3_1_blocks_3_conv2_bn_running_mean, ema_backbone_stage3_1_blocks_3_conv2_bn_running_var, ema_backbone_stage3_1_blocks_3_conv2_bn_num_batches_tracked, ema_backbone_st
age3_1_blocks_4_conv1_conv_weight, ema_backbone_stage3_1_blocks_4_conv1_bn_weight, ema_backbone_stage3_1_blocks_4_conv1_bn_bias, ema_backbone_stage3_1_blocks_4_conv1_bn_running_mean, ema_backbone_stage3_1_blocks_4_conv1_bn_running_var, ema_backbone_stage3_1_blocks_4_conv1_bn_num_batches_tracked, ema_backbone_stage3_1_blocks_4_conv2_conv_weight, ema_backbone_stage3_1_blocks_4_conv2_bn_weight, ema_backbone_stage3_1_block
s_4_conv2_bn_bias, ema_backbone_stage3_1_blocks_4_conv2_bn_running_mean, ema_backbone_stage3_1_blocks_4_conv2_bn_running_var, ema_backbone_stage3_1_blocks_4_conv2_bn_num_batches_tracked, ema_backbone_stage3_1_blocks_5_conv1_conv_weight, ema_backbone_stage3_1_blocks_5_conv1_bn_weight, ema_backbone_stage3_1_blocks_5_conv1_bn_bias, ema_backbone_stage3_1_blocks_5_conv1_bn_running_mean, ema_backbone_stage3_1_blocks_5_conv1_
bn_running_var, ema_backbone_stage3_1_blocks_5_conv1_bn_num_batches_tracked, ema_backbone_stage3_1_blocks_5_conv2_conv_weight, ema_backbone_stage3_1_blocks_5_conv2_bn_weight, ema_backbone_stage3_1_blocks_5_conv2_bn_bias, ema_backbone_stage3_1_blocks_5_conv2_bn_running_mean, ema_backbone_stage3_1_blocks_5_conv2_bn_running_var, ema_backbone_stage3_1_blocks_5_conv2_bn_num_batches_tracked, ema_backbone_stage3_1_blocks_6_co
nv1_conv_weight, ema_backbone_stage3_1_blocks_6_conv1_bn_weight, ema_backbone_stage3_1_blocks_6_conv1_bn_bias, ema_backbone_stage3_1_blocks_6_conv1_bn_running_mean, ema_backbone_stage3_1_blocks_6_conv1_bn_running_var, ema_backbone_stage3_1_blocks_6_conv1_bn_num_batches_tracked, ema_backbone_stage3_1_blocks_6_conv2_conv_weight, ema_backbone_stage3_1_blocks_6_conv2_bn_weight, ema_backbone_stage3_1_blocks_6_conv2_bn_bias,
 ema_backbone_stage3_1_blocks_6_conv2_bn_running_mean, ema_backbone_stage3_1_blocks_6_conv2_bn_running_var, ema_backbone_stage3_1_blocks_6_conv2_bn_num_batches_tracked, ema_backbone_stage3_1_blocks_7_conv1_conv_weight, ema_backbone_stage3_1_blocks_7_conv1_bn_weight, ema_backbone_stage3_1_blocks_7_conv1_bn_bias, ema_backbone_stage3_1_blocks_7_conv1_bn_running_mean, ema_backbone_stage3_1_blocks_7_conv1_bn_running_var, em
a_backbone_stage3_1_blocks_7_conv1_bn_num_batches_tracked, ema_backbone_stage3_1_blocks_7_conv2_conv_weight, ema_backbone_stage3_1_blocks_7_conv2_bn_weight, ema_backbone_stage3_1_blocks_7_conv2_bn_bias, ema_backbone_stage3_1_blocks_7_conv2_bn_running_mean, ema_backbone_stage3_1_blocks_7_conv2_bn_running_var, ema_backbone_stage3_1_blocks_7_conv2_bn_num_batches_tracked, ema_backbone_stage3_1_blocks_8_conv1_conv_weight, e
ma_backbone_stage3_1_blocks_8_conv1_bn_weight, ema_backbone_stage3_1_blocks_8_conv1_bn_bias, ema_backbone_stage3_1_blocks_8_conv1_bn_running_mean, ema_backbone_stage3_1_blocks_8_conv1_bn_running_var, ema_backbone_stage3_1_blocks_8_conv1_bn_num_batches_tracked, ema_backbone_stage3_1_blocks_8_conv2_conv_weight, ema_backbone_stage3_1_blocks_8_conv2_bn_weight, ema_backbone_stage3_1_blocks_8_conv2_bn_bias, ema_backbone_stag
e3_1_blocks_8_conv2_bn_running_mean, ema_backbone_stage3_1_blocks_8_conv2_bn_running_var, ema_backbone_stage3_1_blocks_8_conv2_bn_num_batches_tracked, ema_backbone_stage4_0_conv_weight, ema_backbone_stage4_0_bn_weight, ema_backbone_stage4_0_bn_bias, ema_backbone_stage4_0_bn_running_mean, ema_backbone_stage4_0_bn_running_var, ema_backbone_stage4_0_bn_num_batches_tracked, ema_backbone_stage4_1_conv1_conv_weight, ema_back
bone_stage4_1_conv1_bn_weight, ema_backbone_stage4_1_conv1_bn_bias, ema_backbone_stage4_1_conv1_bn_running_mean, ema_backbone_stage4_1_conv1_bn_running_var, ema_backbone_stage4_1_conv1_bn_num_batches_tracked, ema_backbone_stage4_1_conv2_conv_weight, ema_backbone_stage4_1_conv2_bn_weight, ema_backbone_stage4_1_conv2_bn_bias, ema_backbone_stage4_1_conv2_bn_running_mean, ema_backbone_stage4_1_conv2_bn_running_var, ema_bac
kbone_stage4_1_conv2_bn_num_batches_tracked, ema_backbone_stage4_2_main_conv_conv_weight, ema_backbone_stage4_2_main_conv_bn_weight, ema_backbone_stage4_2_main_conv_bn_bias, ema_backbone_stage4_2_main_conv_bn_running_mean, ema_backbone_stage4_2_main_conv_bn_running_var, ema_backbone_stage4_2_main_conv_bn_num_batches_tracked, ema_backbone_stage4_2_short_conv_conv_weight, ema_backbone_stage4_2_short_conv_bn_weight, ema_b
ackbone_stage4_2_short_conv_bn_bias, ema_backbone_stage4_2_short_conv_bn_running_mean, ema_backbone_stage4_2_short_conv_bn_running_var, ema_backbone_stage4_2_short_conv_bn_num_batches_tracked, ema_backbone_stage4_2_final_conv_conv_weight, ema_backbone_stage4_2_final_conv_bn_weight, ema_backbone_stage4_2_final_conv_bn_bias, ema_backbone_stage4_2_final_conv_bn_running_mean, ema_backbone_stage4_2_final_conv_bn_running_var
, ema_backbone_stage4_2_final_conv_bn_num_batches_tracked, ema_backbone_stage4_2_blocks_0_conv1_conv_weight, ema_backbone_stage4_2_blocks_0_conv1_bn_weight, ema_backbone_stage4_2_blocks_0_conv1_bn_bias, ema_backbone_stage4_2_blocks_0_conv1_bn_running_mean, ema_backbone_stage4_2_blocks_0_conv1_bn_running_var, ema_backbone_stage4_2_blocks_0_conv1_bn_num_batches_tracked, ema_backbone_stage4_2_blocks_0_conv2_conv_weight, e
ma_backbone_stage4_2_blocks_0_conv2_bn_weight, ema_backbone_stage4_2_blocks_0_conv2_bn_bias, ema_backbone_stage4_2_blocks_0_conv2_bn_running_mean, ema_backbone_stage4_2_blocks_0_conv2_bn_running_var, ema_backbone_stage4_2_blocks_0_conv2_bn_num_batches_tracked, ema_backbone_stage4_2_blocks_1_conv1_conv_weight, ema_backbone_stage4_2_blocks_1_conv1_bn_weight, ema_backbone_stage4_2_blocks_1_conv1_bn_bias, ema_backbone_stag
e4_2_blocks_1_conv1_bn_running_mean, ema_backbone_stage4_2_blocks_1_conv1_bn_running_var, ema_backbone_stage4_2_blocks_1_conv1_bn_num_batches_tracked, ema_backbone_stage4_2_blocks_1_conv2_conv_weight, ema_backbone_stage4_2_blocks_1_conv2_bn_weight, ema_backbone_stage4_2_blocks_1_conv2_bn_bias, ema_backbone_stage4_2_blocks_1_conv2_bn_running_mean, ema_backbone_stage4_2_blocks_1_conv2_bn_running_var, ema_backbone_stage4_
2_blocks_1_conv2_bn_num_batches_tracked, ema_backbone_stage4_2_blocks_2_conv1_conv_weight, ema_backbone_stage4_2_blocks_2_conv1_bn_weight, ema_backbone_stage4_2_blocks_2_conv1_bn_bias, ema_backbone_stage4_2_blocks_2_conv1_bn_running_mean, ema_backbone_stage4_2_blocks_2_conv1_bn_running_var, ema_backbone_stage4_2_blocks_2_conv1_bn_num_batches_tracked, ema_backbone_stage4_2_blocks_2_conv2_conv_weight, ema_backbone_stage4
_2_blocks_2_conv2_bn_weight, ema_backbone_stage4_2_blocks_2_conv2_bn_bias, ema_backbone_stage4_2_blocks_2_conv2_bn_running_mean, ema_backbone_stage4_2_blocks_2_conv2_bn_running_var, ema_backbone_stage4_2_blocks_2_conv2_bn_num_batches_tracked, ema_neck_reduce_layers_0_conv_weight, ema_neck_reduce_layers_0_bn_weight, ema_neck_reduce_layers_0_bn_bias, ema_neck_reduce_layers_0_bn_running_mean, ema_neck_reduce_layers_0_bn_r
unning_var, ema_neck_reduce_layers_0_bn_num_batches_tracked, ema_neck_reduce_layers_1_conv_weight, ema_neck_reduce_layers_1_bn_weight, ema_neck_reduce_layers_1_bn_bias, ema_neck_reduce_layers_1_bn_running_mean, ema_neck_reduce_layers_1_bn_running_var, ema_neck_reduce_layers_1_bn_num_batches_tracked, ema_neck_top_down_blocks_0_main_conv_conv_weight, ema_neck_top_down_blocks_0_main_conv_bn_weight, ema_neck_top_down_block
s_0_main_conv_bn_bias, ema_neck_top_down_blocks_0_main_conv_bn_running_mean, ema_neck_top_down_blocks_0_main_conv_bn_running_var, ema_neck_top_down_blocks_0_main_conv_bn_num_batches_tracked, ema_neck_top_down_blocks_0_short_conv_conv_weight, ema_neck_top_down_blocks_0_short_conv_bn_weight, ema_neck_top_down_blocks_0_short_conv_bn_bias, ema_neck_top_down_blocks_0_short_conv_bn_running_mean, ema_neck_top_down_blocks_0_sh
ort_conv_bn_running_var, ema_neck_top_down_blocks_0_short_conv_bn_num_batches_tracked, ema_neck_top_down_blocks_0_final_conv_conv_weight, ema_neck_top_down_blocks_0_final_conv_bn_weight, ema_neck_top_down_blocks_0_final_conv_bn_bias, ema_neck_top_down_blocks_0_final_conv_bn_running_mean, ema_neck_top_down_blocks_0_final_conv_bn_running_var, ema_neck_top_down_blocks_0_final_conv_bn_num_batches_tracked, ema_neck_top_down
_blocks_0_blocks_0_conv1_conv_weight, ema_neck_top_down_blocks_0_blocks_0_conv1_bn_weight, ema_neck_top_down_blocks_0_blocks_0_conv1_bn_bias, ema_neck_top_down_blocks_0_blocks_0_conv1_bn_running_mean, ema_neck_top_down_blocks_0_blocks_0_conv1_bn_running_var, ema_neck_top_down_blocks_0_blocks_0_conv1_bn_num_batches_tracked, ema_neck_top_down_blocks_0_blocks_0_conv2_conv_weight, ema_neck_top_down_blocks_0_blocks_0_conv2_
bn_weight, ema_neck_top_down_blocks_0_blocks_0_conv2_bn_bias, ema_neck_top_down_blocks_0_blocks_0_conv2_bn_running_mean, ema_neck_top_down_blocks_0_blocks_0_conv2_bn_running_var, ema_neck_top_down_blocks_0_blocks_0_conv2_bn_num_batches_tracked, ema_neck_top_down_blocks_0_blocks_1_conv1_conv_weight, ema_neck_top_down_blocks_0_blocks_1_conv1_bn_weight, ema_neck_top_down_blocks_0_blocks_1_conv1_bn_bias, ema_neck_top_down_
blocks_0_blocks_1_conv1_bn_running_mean, ema_neck_top_down_blocks_0_blocks_1_conv1_bn_running_var, ema_neck_top_down_blocks_0_blocks_1_conv1_bn_num_batches_tracked, ema_neck_top_down_blocks_0_blocks_1_conv2_conv_weight, ema_neck_top_down_blocks_0_blocks_1_conv2_bn_weight, ema_neck_top_down_blocks_0_blocks_1_conv2_bn_bias, ema_neck_top_down_blocks_0_blocks_1_conv2_bn_running_mean, ema_neck_top_down_blocks_0_blocks_1_con
v2_bn_running_var, ema_neck_top_down_blocks_0_blocks_1_conv2_bn_num_batches_tracked, ema_neck_top_down_blocks_0_blocks_2_conv1_conv_weight, ema_neck_top_down_blocks_0_blocks_2_conv1_bn_weight, ema_neck_top_down_blocks_0_blocks_2_conv1_bn_bias, ema_neck_top_down_blocks_0_blocks_2_conv1_bn_running_mean, ema_neck_top_down_blocks_0_blocks_2_conv1_bn_running_var, ema_neck_top_down_blocks_0_blocks_2_conv1_bn_num_batches_trac
ked, ema_neck_top_down_blocks_0_blocks_2_conv2_conv_weight, ema_neck_top_down_blocks_0_blocks_2_conv2_bn_weight, ema_neck_top_down_blocks_0_blocks_2_conv2_bn_bias, ema_neck_top_down_blocks_0_blocks_2_conv2_bn_running_mean, ema_neck_top_down_blocks_0_blocks_2_conv2_bn_running_var, ema_neck_top_down_blocks_0_blocks_2_conv2_bn_num_batches_tracked, ema_neck_top_down_blocks_1_main_conv_conv_weight, ema_neck_top_down_blocks_
1_main_conv_bn_weight, ema_neck_top_down_blocks_1_main_conv_bn_bias, ema_neck_top_down_blocks_1_main_conv_bn_running_mean, ema_neck_top_down_blocks_1_main_conv_bn_running_var, ema_neck_top_down_blocks_1_main_conv_bn_num_batches_tracked, ema_neck_top_down_blocks_1_short_conv_conv_weight, ema_neck_top_down_blocks_1_short_conv_bn_weight, ema_neck_top_down_blocks_1_short_conv_bn_bias, ema_neck_top_down_blocks_1_short_conv_
bn_running_mean, ema_neck_top_down_blocks_1_short_conv_bn_running_var, ema_neck_top_down_blocks_1_short_conv_bn_num_batches_tracked, ema_neck_top_down_blocks_1_final_conv_conv_weight, ema_neck_top_down_blocks_1_final_conv_bn_weight, ema_neck_top_down_blocks_1_final_conv_bn_bias, ema_neck_top_down_blocks_1_final_conv_bn_running_mean, ema_neck_top_down_blocks_1_final_conv_bn_running_var, ema_neck_top_down_blocks_1_final_
conv_bn_num_batches_tracked, ema_neck_top_down_blocks_1_blocks_0_conv1_conv_weight, ema_neck_top_down_blocks_1_blocks_0_conv1_bn_weight, ema_neck_top_down_blocks_1_blocks_0_conv1_bn_bias, ema_neck_top_down_blocks_1_blocks_0_conv1_bn_running_mean, ema_neck_top_down_blocks_1_blocks_0_conv1_bn_running_var, ema_neck_top_down_blocks_1_blocks_0_conv1_bn_num_batches_tracked, ema_neck_top_down_blocks_1_blocks_0_conv2_conv_weig
ht, ema_neck_top_down_blocks_1_blocks_0_conv2_bn_weight, ema_neck_top_down_blocks_1_blocks_0_conv2_bn_bias, ema_neck_top_down_blocks_1_blocks_0_conv2_bn_running_mean, ema_neck_top_down_blocks_1_blocks_0_conv2_bn_running_var, ema_neck_top_down_blocks_1_blocks_0_conv2_bn_num_batches_tracked, ema_neck_top_down_blocks_1_blocks_1_conv1_conv_weight, ema_neck_top_down_blocks_1_blocks_1_conv1_bn_weight, ema_neck_top_down_block
s_1_blocks_1_conv1_bn_bias, ema_neck_top_down_blocks_1_blocks_1_conv1_bn_running_mean, ema_neck_top_down_blocks_1_blocks_1_conv1_bn_running_var, ema_neck_top_down_blocks_1_blocks_1_conv1_bn_num_batches_tracked, ema_neck_top_down_blocks_1_blocks_1_conv2_conv_weight, ema_neck_top_down_blocks_1_blocks_1_conv2_bn_weight, ema_neck_top_down_blocks_1_blocks_1_conv2_bn_bias, ema_neck_top_down_blocks_1_blocks_1_conv2_bn_running
_mean, ema_neck_top_down_blocks_1_blocks_1_conv2_bn_running_var, ema_neck_top_down_blocks_1_blocks_1_conv2_bn_num_batches_tracked, ema_neck_top_down_blocks_1_blocks_2_conv1_conv_weight, ema_neck_top_down_blocks_1_blocks_2_conv1_bn_weight, ema_neck_top_down_blocks_1_blocks_2_conv1_bn_bias, ema_neck_top_down_blocks_1_blocks_2_conv1_bn_running_mean, ema_neck_top_down_blocks_1_blocks_2_conv1_bn_running_var, ema_neck_top_do
wn_blocks_1_blocks_2_conv1_bn_num_batches_tracked, ema_neck_top_down_blocks_1_blocks_2_conv2_conv_weight, ema_neck_top_down_blocks_1_blocks_2_conv2_bn_weight, ema_neck_top_down_blocks_1_blocks_2_conv2_bn_bias, ema_neck_top_down_blocks_1_blocks_2_conv2_bn_running_mean, ema_neck_top_down_blocks_1_blocks_2_conv2_bn_running_var, ema_neck_top_down_blocks_1_blocks_2_conv2_bn_num_batches_tracked, ema_neck_downsamples_0_conv_w
eight, ema_neck_downsamples_0_bn_weight, ema_neck_downsamples_0_bn_bias, ema_neck_downsamples_0_bn_running_mean, ema_neck_downsamples_0_bn_running_var, ema_neck_downsamples_0_bn_num_batches_tracked, ema_neck_downsamples_1_conv_weight, ema_neck_downsamples_1_bn_weight, ema_neck_downsamples_1_bn_bias, ema_neck_downsamples_1_bn_running_mean, ema_neck_downsamples_1_bn_running_var, ema_neck_downsamples_1_bn_num_batches_trac
ked, ema_neck_bottom_up_blocks_0_main_conv_conv_weight, ema_neck_bottom_up_blocks_0_main_conv_bn_weight, ema_neck_bottom_up_blocks_0_main_conv_bn_bias, ema_neck_bottom_up_blocks_0_main_conv_bn_running_mean, ema_neck_bottom_up_blocks_0_main_conv_bn_running_var, ema_neck_bottom_up_blocks_0_main_conv_bn_num_batches_tracked, ema_neck_bottom_up_blocks_0_short_conv_conv_weight, ema_neck_bottom_up_blocks_0_short_conv_bn_weigh
t, ema_neck_bottom_up_blocks_0_short_conv_bn_bias, ema_neck_bottom_up_blocks_0_short_conv_bn_running_mean, ema_neck_bottom_up_blocks_0_short_conv_bn_running_var, ema_neck_bottom_up_blocks_0_short_conv_bn_num_batches_tracked, ema_neck_bottom_up_blocks_0_final_conv_conv_weight, ema_neck_bottom_up_blocks_0_final_conv_bn_weight, ema_neck_bottom_up_blocks_0_final_conv_bn_bias, ema_neck_bottom_up_blocks_0_final_conv_bn_runni
ng_mean, ema_neck_bottom_up_blocks_0_final_conv_bn_running_var, ema_neck_bottom_up_blocks_0_final_conv_bn_num_batches_tracked, ema_neck_bottom_up_blocks_0_blocks_0_conv1_conv_weight, ema_neck_bottom_up_blocks_0_blocks_0_conv1_bn_weight, ema_neck_bottom_up_blocks_0_blocks_0_conv1_bn_bias, ema_neck_bottom_up_blocks_0_blocks_0_conv1_bn_running_mean, ema_neck_bottom_up_blocks_0_blocks_0_conv1_bn_running_var, ema_neck_botto
m_up_blocks_0_blocks_0_conv1_bn_num_batches_tracked, ema_neck_bottom_up_blocks_0_blocks_0_conv2_conv_weight, ema_neck_bottom_up_blocks_0_blocks_0_conv2_bn_weight, ema_neck_bottom_up_blocks_0_blocks_0_conv2_bn_bias, ema_neck_bottom_up_blocks_0_blocks_0_conv2_bn_running_mean, ema_neck_bottom_up_blocks_0_blocks_0_conv2_bn_running_var, ema_neck_bottom_up_blocks_0_blocks_0_conv2_bn_num_batches_tracked, ema_neck_bottom_up_bl
ocks_0_blocks_1_conv1_conv_weight, ema_neck_bottom_up_blocks_0_blocks_1_conv1_bn_weight, ema_neck_bottom_up_blocks_0_blocks_1_conv1_bn_bias, ema_neck_bottom_up_blocks_0_blocks_1_conv1_bn_running_mean, ema_neck_bottom_up_blocks_0_blocks_1_conv1_bn_running_var, ema_neck_bottom_up_blocks_0_blocks_1_conv1_bn_num_batches_tracked, ema_neck_bottom_up_blocks_0_blocks_1_conv2_conv_weight, ema_neck_bottom_up_blocks_0_blocks_1_co
nv2_bn_weight, ema_neck_bottom_up_blocks_0_blocks_1_conv2_bn_bias, ema_neck_bottom_up_blocks_0_blocks_1_conv2_bn_running_mean, ema_neck_bottom_up_blocks_0_blocks_1_conv2_bn_running_var, ema_neck_bottom_up_blocks_0_blocks_1_conv2_bn_num_batches_tracked, ema_neck_bottom_up_blocks_0_blocks_2_conv1_conv_weight, ema_neck_bottom_up_blocks_0_blocks_2_conv1_bn_weight, ema_neck_bottom_up_blocks_0_blocks_2_conv1_bn_bias, ema_nec
k_bottom_up_blocks_0_blocks_2_conv1_bn_running_mean, ema_neck_bottom_up_blocks_0_blocks_2_conv1_bn_running_var, ema_neck_bottom_up_blocks_0_blocks_2_conv1_bn_num_batches_tracked, ema_neck_bottom_up_blocks_0_blocks_2_conv2_conv_weight, ema_neck_bottom_up_blocks_0_blocks_2_conv2_bn_weight, ema_neck_bottom_up_blocks_0_blocks_2_conv2_bn_bias, ema_neck_bottom_up_blocks_0_blocks_2_conv2_bn_running_mean, ema_neck_bottom_up_bl
ocks_0_blocks_2_conv2_bn_running_var, ema_neck_bottom_up_blocks_0_blocks_2_conv2_bn_num_batches_tracked, ema_neck_bottom_up_blocks_1_main_conv_conv_weight, ema_neck_bottom_up_blocks_1_main_conv_bn_weight, ema_neck_bottom_up_blocks_1_main_conv_bn_bias, ema_neck_bottom_up_blocks_1_main_conv_bn_running_mean, ema_neck_bottom_up_blocks_1_main_conv_bn_running_var, ema_neck_bottom_up_blocks_1_main_conv_bn_num_batches_tracked,
 ema_neck_bottom_up_blocks_1_short_conv_conv_weight, ema_neck_bottom_up_blocks_1_short_conv_bn_weight, ema_neck_bottom_up_blocks_1_short_conv_bn_bias, ema_neck_bottom_up_blocks_1_short_conv_bn_running_mean, ema_neck_bottom_up_blocks_1_short_conv_bn_running_var, ema_neck_bottom_up_blocks_1_short_conv_bn_num_batches_tracked, ema_neck_bottom_up_blocks_1_final_conv_conv_weight, ema_neck_bottom_up_blocks_1_final_conv_bn_wei
ght, ema_neck_bottom_up_blocks_1_final_conv_bn_bias, ema_neck_bottom_up_blocks_1_final_conv_bn_running_mean, ema_neck_bottom_up_blocks_1_final_conv_bn_running_var, ema_neck_bottom_up_blocks_1_final_conv_bn_num_batches_tracked, ema_neck_bottom_up_blocks_1_blocks_0_conv1_conv_weight, ema_neck_bottom_up_blocks_1_blocks_0_conv1_bn_weight, ema_neck_bottom_up_blocks_1_blocks_0_conv1_bn_bias, ema_neck_bottom_up_blocks_1_block
s_0_conv1_bn_running_mean, ema_neck_bottom_up_blocks_1_blocks_0_conv1_bn_running_var, ema_neck_bottom_up_blocks_1_blocks_0_conv1_bn_num_batches_tracked, ema_neck_bottom_up_blocks_1_blocks_0_conv2_conv_weight, ema_neck_bottom_up_blocks_1_blocks_0_conv2_bn_weight, ema_neck_bottom_up_blocks_1_blocks_0_conv2_bn_bias, ema_neck_bottom_up_blocks_1_blocks_0_conv2_bn_running_mean, ema_neck_bottom_up_blocks_1_blocks_0_conv2_bn_r
unning_var, ema_neck_bottom_up_blocks_1_blocks_0_conv2_bn_num_batches_tracked, ema_neck_bottom_up_blocks_1_blocks_1_conv1_conv_weight, ema_neck_bottom_up_blocks_1_blocks_1_conv1_bn_weight, ema_neck_bottom_up_blocks_1_blocks_1_conv1_bn_bias, ema_neck_bottom_up_blocks_1_blocks_1_conv1_bn_running_mean, ema_neck_bottom_up_blocks_1_blocks_1_conv1_bn_running_var, ema_neck_bottom_up_blocks_1_blocks_1_conv1_bn_num_batches_trac
ked, ema_neck_bottom_up_blocks_1_blocks_1_conv2_conv_weight, ema_neck_bottom_up_blocks_1_blocks_1_conv2_bn_weight, ema_neck_bottom_up_blocks_1_blocks_1_conv2_bn_bias, ema_neck_bottom_up_blocks_1_blocks_1_conv2_bn_running_mean, ema_neck_bottom_up_blocks_1_blocks_1_conv2_bn_running_var, ema_neck_bottom_up_blocks_1_blocks_1_conv2_bn_num_batches_tracked, ema_neck_bottom_up_blocks_1_blocks_2_conv1_conv_weight, ema_neck_bott
om_up_blocks_1_blocks_2_conv1_bn_weight, ema_neck_bottom_up_blocks_1_blocks_2_conv1_bn_bias, ema_neck_bottom_up_blocks_1_blocks_2_conv1_bn_running_mean, ema_neck_bottom_up_blocks_1_blocks_2_conv1_bn_running_var, ema_neck_bottom_up_blocks_1_blocks_2_conv1_bn_num_batches_tracked, ema_neck_bottom_up_blocks_1_blocks_2_conv2_conv_weight, ema_neck_bottom_up_blocks_1_blocks_2_conv2_bn_weight, ema_neck_bottom_up_blocks_1_block
s_2_conv2_bn_bias, ema_neck_bottom_up_blocks_1_blocks_2_conv2_bn_running_mean, ema_neck_bottom_up_blocks_1_blocks_2_conv2_bn_running_var, ema_neck_bottom_up_blocks_1_blocks_2_conv2_bn_num_batches_tracked, ema_neck_out_convs_0_conv_weight, ema_neck_out_convs_0_bn_weight, ema_neck_out_convs_0_bn_bias, ema_neck_out_convs_0_bn_running_mean, ema_neck_out_convs_0_bn_running_var, ema_neck_out_convs_0_bn_num_batches_tracked, e
ma_neck_out_convs_1_conv_weight, ema_neck_out_convs_1_bn_weight, ema_neck_out_convs_1_bn_bias, ema_neck_out_convs_1_bn_running_mean, ema_neck_out_convs_1_bn_running_var, ema_neck_out_convs_1_bn_num_batches_tracked, ema_neck_out_convs_2_conv_weight, ema_neck_out_convs_2_bn_weight, ema_neck_out_convs_2_bn_bias, ema_neck_out_convs_2_bn_running_mean, ema_neck_out_convs_2_bn_running_var, ema_neck_out_convs_2_bn_num_batches_
tracked, ema_bbox_head_multi_level_cls_convs_0_0_conv_weight, ema_bbox_head_multi_level_cls_convs_0_0_bn_weight, ema_bbox_head_multi_level_cls_convs_0_0_bn_bias, ema_bbox_head_multi_level_cls_convs_0_0_bn_running_mean, ema_bbox_head_multi_level_cls_convs_0_0_bn_running_var, ema_bbox_head_multi_level_cls_convs_0_0_bn_num_batches_tracked, ema_bbox_head_multi_level_cls_convs_0_1_conv_weight, ema_bbox_head_multi_level_cls_
convs_0_1_bn_weight, ema_bbox_head_multi_level_cls_convs_0_1_bn_bias, ema_bbox_head_multi_level_cls_convs_0_1_bn_running_mean, ema_bbox_head_multi_level_cls_convs_0_1_bn_running_var, ema_bbox_head_multi_level_cls_convs_0_1_bn_num_batches_tracked, ema_bbox_head_multi_level_cls_convs_1_0_conv_weight, ema_bbox_head_multi_level_cls_convs_1_0_bn_weight, ema_bbox_head_multi_level_cls_convs_1_0_bn_bias, ema_bbox_head_multi_le
vel_cls_convs_1_0_bn_running_mean, ema_bbox_head_multi_level_cls_convs_1_0_bn_running_var, ema_bbox_head_multi_level_cls_convs_1_0_bn_num_batches_tracked, ema_bbox_head_multi_level_cls_convs_1_1_conv_weight, ema_bbox_head_multi_level_cls_convs_1_1_bn_weight, ema_bbox_head_multi_level_cls_convs_1_1_bn_bias, ema_bbox_head_multi_level_cls_convs_1_1_bn_running_mean, ema_bbox_head_multi_level_cls_convs_1_1_bn_running_var, e
ma_bbox_head_multi_level_cls_convs_1_1_bn_num_batches_tracked, ema_bbox_head_multi_level_cls_convs_2_0_conv_weight, ema_bbox_head_multi_level_cls_convs_2_0_bn_weight, ema_bbox_head_multi_level_cls_convs_2_0_bn_bias, ema_bbox_head_multi_level_cls_convs_2_0_bn_running_mean, ema_bbox_head_multi_level_cls_convs_2_0_bn_running_var, ema_bbox_head_multi_level_cls_convs_2_0_bn_num_batches_tracked, ema_bbox_head_multi_level_cls
_convs_2_1_conv_weight, ema_bbox_head_multi_level_cls_convs_2_1_bn_weight, ema_bbox_head_multi_level_cls_convs_2_1_bn_bias, ema_bbox_head_multi_level_cls_convs_2_1_bn_running_mean, ema_bbox_head_multi_level_cls_convs_2_1_bn_running_var, ema_bbox_head_multi_level_cls_convs_2_1_bn_num_batches_tracked, ema_bbox_head_multi_level_reg_convs_0_0_conv_weight, ema_bbox_head_multi_level_reg_convs_0_0_bn_weight, ema_bbox_head_mul
ti_level_reg_convs_0_0_bn_bias, ema_bbox_head_multi_level_reg_convs_0_0_bn_running_mean, ema_bbox_head_multi_level_reg_convs_0_0_bn_running_var, ema_bbox_head_multi_level_reg_convs_0_0_bn_num_batches_tracked, ema_bbox_head_multi_level_reg_convs_0_1_conv_weight, ema_bbox_head_multi_level_reg_convs_0_1_bn_weight, ema_bbox_head_multi_level_reg_convs_0_1_bn_bias, ema_bbox_head_multi_level_reg_convs_0_1_bn_running_mean, ema
_bbox_head_multi_level_reg_convs_0_1_bn_running_var, ema_bbox_head_multi_level_reg_convs_0_1_bn_num_batches_tracked, ema_bbox_head_multi_level_reg_convs_1_0_conv_weight, ema_bbox_head_multi_level_reg_convs_1_0_bn_weight, ema_bbox_head_multi_level_reg_convs_1_0_bn_bias, ema_bbox_head_multi_level_reg_convs_1_0_bn_running_mean, ema_bbox_head_multi_level_reg_convs_1_0_bn_running_var, ema_bbox_head_multi_level_reg_convs_1_0
_bn_num_batches_tracked, ema_bbox_head_multi_level_reg_convs_1_1_conv_weight, ema_bbox_head_multi_level_reg_convs_1_1_bn_weight, ema_bbox_head_multi_level_reg_convs_1_1_bn_bias, ema_bbox_head_multi_level_reg_convs_1_1_bn_running_mean, ema_bbox_head_multi_level_reg_convs_1_1_bn_running_var, ema_bbox_head_multi_level_reg_convs_1_1_bn_num_batches_tracked, ema_bbox_head_multi_level_reg_convs_2_0_conv_weight, ema_bbox_head_
multi_level_reg_convs_2_0_bn_weight, ema_bbox_head_multi_level_reg_convs_2_0_bn_bias, ema_bbox_head_multi_level_reg_convs_2_0_bn_running_mean, ema_bbox_head_multi_level_reg_convs_2_0_bn_running_var, ema_bbox_head_multi_level_reg_convs_2_0_bn_num_batches_tracked, ema_bbox_head_multi_level_reg_convs_2_1_conv_weight, ema_bbox_head_multi_level_reg_convs_2_1_bn_weight, ema_bbox_head_multi_level_reg_convs_2_1_bn_bias, ema_bb
ox_head_multi_level_reg_convs_2_1_bn_running_mean, ema_bbox_head_multi_level_reg_convs_2_1_bn_running_var, ema_bbox_head_multi_level_reg_convs_2_1_bn_num_batches_tracked, ema_bbox_head_multi_level_conv_cls_0_weight, ema_bbox_head_multi_level_conv_cls_0_bias, ema_bbox_head_multi_level_conv_cls_1_weight, ema_bbox_head_multi_level_conv_cls_1_bias, ema_bbox_head_multi_level_conv_cls_2_weight, ema_bbox_head_multi_level_conv
_cls_2_bias, ema_bbox_head_multi_level_conv_reg_0_weight, ema_bbox_head_multi_level_conv_reg_0_bias, ema_bbox_head_multi_level_conv_reg_1_weight, ema_bbox_head_multi_level_conv_reg_1_bias, ema_bbox_head_multi_level_conv_reg_2_weight, ema_bbox_head_multi_level_conv_reg_2_bias, ema_bbox_head_multi_level_conv_obj_0_weight, ema_bbox_head_multi_level_conv_obj_0_bias, ema_bbox_head_multi_level_conv_obj_1_weight, ema_bbox_head_multi_level_conv_obj_1_bias, ema_bbox_head_multi_level_conv_obj_2_weight, ema_bbox_head_multi_level_conv_obj_2_bias

2022-07-22 14:11:22,772 - mmdeploy - WARNING - DeprecationWarning: get_onnx_config will be deprecated in the future. 
2022-07-22 14:11:22,772 - mmdeploy - INFO - Export PyTorch model to ONNX: /static/work_dirs/f65b4ca8-11ae-4714-bf1b-5cf3c35ec715\end2end.onnx.
2022-07-22 14:11:22,871 - mmdeploy - WARNING - Can not find torch._C._jit_pass_onnx_deduplicate_initializers, function rewrite will not be applied
d:\mmdeploy\mmdeploy\core\optimizers\function_marker.py:158: TracerWarning: Converting a tensor to a Python integer might cause the trace to be incorrect. We can't record the data flow of Python values, so this value will be treated as a constant in the future. This means that the trace might not generalize to other inputs!
  ys_shape = tuple(int(s) for s in ys.shape)
D:\Anaconda3\envs\aoc\lib\site-packages\torch\functional.py:568: UserWarning: torch.meshgrid: in an upcoming release, it will be required to pass the indexing argument. (Triggered internally at  C:\actions-runner\_work\pytorch\pytorch\builder\windows\pytorch\aten\src\ATen\native\TensorShape.cpp:2228.)
  return _VF.meshgrid(tensors, **kwargs)  # type: ignore[attr-defined]
d:\mmdeploy\mmdeploy\codebase\mmdet\core\post_processing\bbox_nms.py:259: TracerWarning: Converting a tensor to a Python integer might cause the trace to be incorrect. We can't record the data flow of Python values, so this value will be treated as a constant in the future. This means that the trace might not generalize to other inputs!
  dets, labels = TRTBatchedNMSop.apply(boxes, scores, int(scores.shape[-1]),
d:\mmdeploy\mmdeploy\mmcv\ops\nms.py:178: TracerWarning: Converting a tensor to a Python boolean might cause the trace to be incorrect. We can't record the data flow of Python values, so this value will be treated as a constant in the future. This means that the trace might not generalize to other inputs!
  out_boxes = min(num_boxes, after_topk)
WARNING: The shape inference of mmdeploy::TRTBatchedNMS type is missing, so it may result in wrong shape inference for the exported graph. Please consider adding it in symbolic function.
WARNING: The shape inference of mmdeploy::TRTBatchedNMS type is missing, so it may result in wrong shape inference for the exported graph. Please consider adding it in symbolic function.
WARNING: The shape inference of mmdeploy::TRTBatchedNMS type is missing, so it may result in wrong shape inference for the exported graph. Please consider adding it in symbolic function.
WARNING: The shape inference of mmdeploy::TRTBatchedNMS type is missing, so it may result in wrong shape inference for the exported graph. Please consider adding it in symbolic function.
WARNING: The shape inference of mmdeploy::TRTBatchedNMS type is missing, so it may result in wrong shape inference for the exported graph. Please consider adding it in symbolic function.
WARNING: The shape inference of mmdeploy::TRTBatchedNMS type is missing, so it may result in wrong shape inference for the exported graph. Please consider adding it in symbolic function.
2022-07-22 14:11:38,751 - mmdeploy - INFO - Execute onnx optimize passes.
2022-07-22 14:11:38,751 - mmdeploy - WARNING - Can not optimize model, please build torchscipt extension.
More details: https://github.com/open-mmlab/mmdeploy/blob/master/docs/en/experimental/onnx_optimizer.md
2022-07-22 14:11:43,154 - mmdeploy - INFO - Start pipeline mmdeploy.backend.tensorrt.onnx2tensorrt.onnx2tensorrt in subprocess
2022-07-22 14:11:43,316 - mmdeploy - WARNING - Could not load the library of tensorrt plugins.             Because the file does not exist: 
[07/22/2022-14:11:43] [TRT] [I] [MemUsageChange] Init CUDA: CPU +221, GPU +0, now: CPU 11069, GPU 990 (MiB)
[07/22/2022-14:11:44] [TRT] [I] [MemUsageChange] Init builder kernel library: CPU +6, GPU +2, now: CPU 11256, GPU 992 (MiB)
[07/22/2022-14:11:44] [TRT] [W] onnx2trt_utils.cpp:369: Your ONNX model has been generated with INT64 weights, while TensorRT does not natively support INT64. Attempting to cast down to INT32.
[07/22/2022-14:11:45] [TRT] [W] onnx2trt_utils.cpp:395: One or more weights outside the range of INT32 was clamped
[07/22/2022-14:11:45] [TRT] [W] onnx2trt_utils.cpp:395: One or more weights outside the range of INT32 was clamped
[07/22/2022-14:11:45] [TRT] [W] onnx2trt_utils.cpp:395: One or more weights outside the range of INT32 was clamped
[07/22/2022-14:11:45] [TRT] [I] No importer registered for op: TRTBatchedNMS. Attempting to import as plugin.
[07/22/2022-14:11:45] [TRT] [I] Searching for plugin: TRTBatchedNMS, plugin_version: 1, plugin_namespace:
Process Process-3:
Traceback (most recent call last):
  File "D:\Anaconda3\envs\aoc\lib\multiprocessing\process.py", line 315, in _bootstrap
    self.run()
  File "D:\Anaconda3\envs\aoc\lib\multiprocessing\process.py", line 108, in run
    self._target(*self._args, **self._kwargs)
  File "d:\mmdeploy\mmdeploy\apis\core\pipeline_manager.py", line 107, in __call__
    ret = func(*args, **kwargs)
  File "d:\mmdeploy\mmdeploy\backend\tensorrt\onnx2tensorrt.py", line 79, in onnx2tensorrt
    from_onnx(
  File "d:\mmdeploy\mmdeploy\backend\tensorrt\utils.py", line 113, in from_onnx
    raise RuntimeError(f'Failed to parse onnx, {error_msgs}')
RuntimeError: Failed to parse onnx, In node 716 (importFallbackPluginImporter): UNSUPPORTED_NODE: Assertion failed: creator && "Plugin not found, are the plugin name, version, and namespace correct?"

2022-07-22 14:11:45,731 - mmdeploy - ERROR - `mmdeploy.backend.tensorrt.onnx2tensorrt.onnx2tensorrt` with Call id: 1 failed. exit.
[2022-07-22 14:11:45,731] ERROR:huey.consumer:Worker-1:Process Worker-1 died!
Traceback (most recent call last):
  File "D:\Anaconda3\envs\aoc\lib\site-packages\huey\consumer.py", line 356, in _run
    process.loop()
  File "D:\Anaconda3\envs\aoc\lib\site-packages\huey\consumer.py", line 117, in loop
    self.huey.execute(task, now)
  File "D:\Anaconda3\envs\aoc\lib\site-packages\huey\api.py", line 362, in execute
    return self._execute(task, timestamp)
  File "D:\Anaconda3\envs\aoc\lib\site-packages\huey\api.py", line 379, in _execute
    task_value = task.execute()
  File "D:\Anaconda3\envs\aoc\lib\site-packages\huey\api.py", line 772, in execute
    return func(*args, **kwargs)
  File "D:\workspace\python\ai-online-core\publish.py", line 155, in deploy
    onnx2tensorrt(
  File "d:\mmdeploy\mmdeploy\apis\core\pipeline_manager.py", line 356, in _wrap
    return self.call_function(func_name_, *args, **kwargs)
  File "d:\mmdeploy\mmdeploy\apis\core\pipeline_manager.py", line 324, in call_function
    return self.get_result_sync(call_id)
  File "d:\mmdeploy\mmdeploy\apis\core\pipeline_manager.py", line 305, in get_result_sync
    ret = self.get_caller(func_name).pop_mp_output(call_id)
  File "d:\mmdeploy\mmdeploy\apis\core\pipeline_manager.py", line 82, in pop_mp_output
    exit(1)
  File "D:\Anaconda3\envs\aoc\lib\_sitebuiltins.py", line 26, in __call__
    raise SystemExit(code)
SystemExit: 1

@gzxy-0102
Copy link
Author

there is the new env check info

2022-07-22 14:12:16,238 - mmdeploy - INFO - 

2022-07-22 14:12:16,238 - mmdeploy - INFO - **********Environmental information**********
2022-07-22 14:12:19,981 - mmdeploy - INFO - sys.platform: win32
2022-07-22 14:12:19,981 - mmdeploy - INFO - Python: 3.9.0 (default, Nov 15 2020, 08:30:55) [MSC v.1916 64 bit (AMD64)]
2022-07-22 14:12:19,981 - mmdeploy - INFO - CUDA available: True
2022-07-22 14:12:19,981 - mmdeploy - INFO - GPU 0: NVIDIA GeForce GTX 1060 6GB
2022-07-22 14:12:19,981 - mmdeploy - INFO - CUDA_HOME: D:\CUDAToolkit
2022-07-22 14:12:19,981 - mmdeploy - INFO - NVCC: Cuda compilation tools, release 11.3, V11.3.109
2022-07-22 14:12:19,982 - mmdeploy - INFO - MSVC: 用于 x64 的 Microsoft (R) C/C++ 优化编译器 19.29.30145 版
2022-07-22 14:12:19,982 - mmdeploy - INFO - GCC: n/a
2022-07-22 14:12:19,982 - mmdeploy - INFO - PyTorch: 1.11.0+cu113
2022-07-22 14:12:19,982 - mmdeploy - INFO - PyTorch compiling details: PyTorch built with:
  - C++ Version: 199711
  - MSVC 192829337
  - Intel(R) Math Kernel Library Version 2020.0.2 Product Build 20200624 for Intel(R) 64 architecture applications
  - Intel(R) MKL-DNN v2.5.2 (Git Hash a9302535553c73243c632ad3c4c80beec3d19a1e)
  - OpenMP 2019
  - LAPACK is enabled (usually provided by MKL)
  - CPU capability usage: AVX2
  - CUDA Runtime 11.3
  - NVCC architecture flags: -gencode;arch=compute_37,code=sm_37;-gencode;arch=compute_50,code=sm_50;-gencode;arch=compute_60,code=sm_60;-gencode;arch=compute_61,code=sm_61;-gencode;arch=compute_70,code=sm_70;-gencode;arch=compute_75,code=sm_75;-gencode;arch=compute_80,code=sm_80;-gencode;arch=compute_86,code=sm_86;-gencode;arch=compute_37,code=compute_37
  - CuDNN 8.2
  - Magma 2.5.4
  - Build settings: BLAS_INFO=mkl, BUILD_TYPE=Release, CUDA_VERSION=11.3, CUDNN_VERSION=8.2.0, CXX_COMPILER=C:/actions-runner/_work/pytorch/pytorch/builder/windows/tmp_bin/sccache-cl.exe, CXX_FLAGS=/DWIN32 /D_WINDOWS /GR /EHsc /w /bigobj -DUSE_PTHREADPOOL -openmp:experimental -IC:/actions-runner/_work/pytorch/pytorch/builder/windows/mkl/include -DNDEBUG -DUSE_KINETO -DLIBKINETO_NOCUPTI -DUSE_FBGEMM -DUSE_XNNPACK -DSYMBOLICATE_MOBILE_DEBUG_HANDLE -DEDGE_PROFILER_USE_KINETO, LAPACK_INFO=mkl, PERF_WITH_AVX=1, PERF_WITH_AVX2=1, PERF_WITH_AVX512=1, TORCH_VERSION=1.11.0, USE_CUDA=ON, USE_CUDNN=ON, USE_EXCEPTION_PTR=1, USE_GFLAGS=OFF, USE_GLOG=OFF, USE_MKL=ON, USE_MKLDNN=OFF, USE_MPI=OFF, USE_NCCL=OFF, USE_NNPACK=OFF, USE_OPENMP=ON, USE_ROCM=OFF,

2022-07-22 14:12:19,983 - mmdeploy - INFO - TorchVision: 0.12.0+cu113
2022-07-22 14:12:19,983 - mmdeploy - INFO - OpenCV: 4.6.0
2022-07-22 14:12:19,983 - mmdeploy - INFO - MMCV: 1.6.0
2022-07-22 14:12:19,983 - mmdeploy - INFO - MMCV Compiler: MSVC 192930140
2022-07-22 14:12:19,984 - mmdeploy - INFO - MMCV CUDA Compiler: 11.3
2022-07-22 14:12:19,984 - mmdeploy - INFO - MMDeploy: 0.6.0+1d6437c
2022-07-22 14:12:19,984 - mmdeploy - INFO -

2022-07-22 14:12:19,984 - mmdeploy - INFO - **********Backend information**********
2022-07-22 14:12:20,589 - mmdeploy - INFO - onnxruntime: 1.11.1 ops_is_avaliable : False
2022-07-22 14:12:20,627 - mmdeploy - INFO - tensorrt: 8.4.1.5   ops_is_avaliable : False
2022-07-22 14:12:20,696 - mmdeploy - INFO - ncnn: None  ops_is_avaliable : False
2022-07-22 14:12:20,697 - mmdeploy - INFO - pplnn_is_avaliable: False
2022-07-22 14:12:20,699 - mmdeploy - INFO - openvino_is_avaliable: False
2022-07-22 14:12:20,699 - mmdeploy - INFO -

2022-07-22 14:12:20,699 - mmdeploy - INFO - **********Codebase information**********
2022-07-22 14:12:20,702 - mmdeploy - INFO - mmdet:      2.25.0
2022-07-22 14:12:20,702 - mmdeploy - INFO - mmseg:      None
2022-07-22 14:12:20,702 - mmdeploy - INFO - mmcls:      None
2022-07-22 14:12:20,702 - mmdeploy - INFO - mmocr:      None
2022-07-22 14:12:20,702 - mmdeploy - INFO - mmedit:     None
2022-07-22 14:12:20,703 - mmdeploy - INFO - mmdet3d:    None
2022-07-22 14:12:20,703 - mmdeploy - INFO - mmpose:     None
2022-07-22 14:12:20,703 - mmdeploy - INFO - mmrotate:   None

@gzxy-0102
Copy link
Author

is it the reason why pplcv is not installed? I just saw that pplcv needs to be installed

@AllentDan
Copy link
Member

Please check if file exists: build/bin/*/mmdeploy_tensorrt_ops.dll or mmdeploy/lib/mmdeploy_tensorrt_ops.dll

@gzxy-0102
Copy link
Author

no mmdeploy_tensorrt_ops.dll in the directory
my build command is

cmake .. -G "Visual Studio 16 2019" -A x64 -T v142 -DTENSORRT_DIR="D:\TensorRT\8.4.1.5" -DCUDNN_DIR="D:\CUDAToolkit\lib\x64" -DMMDEPLOY_BUILD_SDK="ON" -DMMDEPLOY_TARGET_DEVICES="cpu,cuda" -DMMDEPLOY_TARGET_BACKENDS="ort,trt" -DMMDEPLOY_CODEBASES="all" -DMMDEPLOY_BUILD_SDK_PYTHON_API="ON"

@irexyc
Copy link
Collaborator

irexyc commented Jul 22, 2022

Please use cmake --build . --config Release to install the xxx_ops.dll to {ROOT}/mmdeploy/lib/ dir.

And you should seperate var by comma like "cpu;cuda"

@gzxy-0102
Copy link
Author

the CUDNN_DIR option can i use cudatoolkit install directory,the cudatoolkit has cudnn in the directory

@gzxy-0102
Copy link
Author

it not works @irexyc the CUDA_PATH is my cuda and cudnn install directory

(aoc) PS D:\mmdeploy\build> cmake .. -G "Visual Studio 16 2019" -A x64 -T v142 -DTENSORRT_DIR="D:\TensorRT\8.4.1.5" -DCUDNN_DIR="$env:CUDA_PATH" -DMMDEPLOY_BUILD_SDK="ON" -DMMDEPLOY_TARGET_DEVICES="cuda" -DMMDEPLOY_TARGET_BACKENDS="trt" -DMMDEPLOY_CODEBASES="all" -DMMDEPLOY_BUILD_SDK_PYTHON_API="ON" -DMMDEPLOY_BUILD_SDK="ON"
-- CMAKE_INSTALL_PREFIX: D:/mmdeploy/build/install
-- The C compiler identification is MSVC 19.29.30145.0
-- The CXX compiler identification is MSVC 19.29.30145.0
-- Detecting C compiler ABI info
-- Detecting C compiler ABI info - done
-- Check for working C compiler: D:/Microsoft Visual Studio/2019/Community/VC/Tools/MSVC/14.29.30133/bin/Hostx64/x64/cl.exe - skipped
-- Detecting C compile features
-- Detecting C compile features - done
-- Detecting CXX compiler ABI info
-- Detecting CXX compiler ABI info - done
-- Check for working CXX compiler: D:/Microsoft Visual Studio/2019/Community/VC/Tools/MSVC/14.29.30133/bin/Hostx64/x64/cl.exe - skipped
-- Detecting CXX compile features
-- Detecting CXX compile features - done
-- Found CUDA: D:/CUDAToolkit (found version "11.3")
CMake Error at D:/CMake/share/cmake-3.23/Modules/CMakeDetermineCompilerId.cmake:491 (message):
  No CUDA toolset found.
Call Stack (most recent call first):
  D:/CMake/share/cmake-3.23/Modules/CMakeDetermineCompilerId.cmake:6 (CMAKE_DETERMINE_COMPILER_ID_BUILD)
  D:/CMake/share/cmake-3.23/Modules/CMakeDetermineCompilerId.cmake:59 (__determine_compiler_id_test)
  D:/CMake/share/cmake-3.23/Modules/CMakeDetermineCUDACompiler.cmake:339 (CMAKE_DETERMINE_COMPILER_ID)
  cmake/cuda.cmake:35 (enable_language)
  CMakeLists.txt:73 (include)


-- Configuring incomplete, errors occurred!
See also "D:/mmdeploy/build/CMakeFiles/CMakeOutput.log".

@gzxy-0102
Copy link
Author

I probably know the reason. Maybe I didn't choose vs when installing CUDA, which led to enable_ The language method cannot find the compiled file of CUDA

Because c++ doesn't know much, it's troublesome for you

@irexyc
Copy link
Collaborator

irexyc commented Jul 22, 2022

Q: the CUDNN_DIR option can i use cudatoolkit install directory,the cudatoolkit has cudnn in the directory
A: The cmake script will check cudnn header and library, it will print errors if it can't search these files from the provided path.

Q: The enable language cuda error:
A: You should copy the four files from C:\Program Files\NVIDIA GPU Computing Toolkit\CUDA\v11.3\extras\visual_studio_integration\MSBuildExtensions to C:\Software\Microsoft Visual Studio\2022\Community\Msbuild\Microsoft\VC\v160\BuildCustomizations\

The path may different on your PC. If there are multi version like v160, v150, it's better to copy to both.

Another link you can refer to

@gzxy-0102
Copy link
Author

Q: the CUDNN_DIR option can i use cudatoolkit install directory,the cudatoolkit has cudnn in the directory A: The cmake script will check cudnn header and library, it will print errors if it can't search these files from the provided path.

Q: The enable language cuda error: A: You should copy the four files from C:\Program Files\NVIDIA GPU Computing Toolkit\CUDA\v11.3\extras\visual_studio_integration\MSBuildExtensions to C:\Software\Microsoft Visual Studio\2022\Community\Msbuild\Microsoft\VC\v160\BuildCustomizations\

The path may different on your PC. If there are multi version like v160, v150, it's better to copy to both.

Another link you can refer to

I have solved this problem by reinstalling CUDA

but how to use the compiled SDK? now i add the directory of pyd file and others dll file to the environment variable to import, it always shows that the model is loaded successfully, but it does not continue to execute the detector
i saw that many dll failed to load, but I put the dll that failed to load into the environment variable

try:
    sys.path.append("SDK_PATH")
    os.environ["PATH"] = "SDK_PATH;" + os.environ["PATH"]
    from mmdeploy_sdk.mmdeploy_python import Detector
except ImportError as e:
    print("SDK Import Error")

image = cv2.imread(param.img)
task = await MMDetTrain.get(id=param.task_id)
detector = Detector(task.work_dir, "cuda", 0)
bboxes, labels, _ = detector([image])[0]
print("----------------------------------------")
print(bboxes)
loading mmdeploy_execution ...
loading mmdeploy_cpu_device ...
loading mmdeploy_cuda_device ...
loading mmdeploy_graph ...
loading mmdeploy_directory_model ...
[2022-07-25 14:25:44.588] [mmdeploy] [info] [model.cpp:95] Register 'DirectoryModel'
loading mmdeploy_transform ...
loading mmdeploy_cpu_transform_impl ...
failed to load library mmdeploy_cpu_transform_impl
loading mmdeploy_cuda_transform_impl ...
loading mmdeploy_transform_module ...
loading mmdeploy_trt_net ...
failed to load library mmdeploy_trt_net
loading mmdeploy_net_module ...
loading mmdeploy_mmcls ...
loading mmdeploy_mmdet ...
failed to load library mmdeploy_mmdet
loading mmdeploy_mmseg ...
failed to load library mmdeploy_mmseg
loading mmdeploy_mmocr ...
failed to load library mmdeploy_mmocr
loading mmdeploy_mmedit ...
failed to load library mmdeploy_mmedit
loading mmdeploy_mmpose ...
failed to load library mmdeploy_mmpose
loading mmdeploy_mmrotate ...
INFO:     Started server process [15388]
INFO:     Waiting for application startup.
INFO:     Application startup complete.
[2022-07-25 14:25:55.715] [mmdeploy] [info] [model.cpp:38] DirectoryModel successfully load model D:\static\work_dirs\f65b4ca8-11ae-4714-bf1b-5cf3c35ec715
INFO:     Stopping reloader process [18552]

@irexyc
Copy link
Collaborator

irexyc commented Jul 25, 2022

I don't konw If you set the path, but you can build the sdk with -DMMDEPLOY_SHARED_LIBS=OFF to avoid the load process.

@gzxy-0102
Copy link
Author

I don't konw If you set the path, but you can build the sdk with to avoid the load process.-DMMDEPLOY_SHARED_LIBS=OFF

i found the problem. there is an opencv_ word460.dll not found, now it's good
image

Sign up for free to join this conversation on GitHub. Already have an account? Sign in to comment
Labels
None yet
Projects
None yet
Development

No branches or pull requests

3 participants