From aebc23f5ae732c9bc189e52623b4cde0f8cb14eb Mon Sep 17 00:00:00 2001 From: Letong Han <106566639+letonghan@users.noreply.github.com> Date: Tue, 10 Sep 2024 13:50:36 +0800 Subject: [PATCH] [ChatQnA] Update README for ModelScope (#770) Signed-off-by: letonghan --- ChatQnA/README.md | 2 ++ ChatQnA/docker/gaudi/README.md | 25 +++++++++++++++++++++++++ ChatQnA/docker/xeon/README.md | 25 +++++++++++++++++++++++++ 3 files changed, 52 insertions(+) diff --git a/ChatQnA/README.md b/ChatQnA/README.md index 0574a75d6..4a02ff9fb 100644 --- a/ChatQnA/README.md +++ b/ChatQnA/README.md @@ -139,6 +139,8 @@ By default, the embedding, reranking and LLM models are set to a default value a Change the `xxx_MODEL_ID` in `docker/xxx/set_env.sh` for your needs. +For customers with proxy issues, the models from [ModelScope](https://www.modelscope.cn/models) are also supported in ChatQnA. Refer to [this readme](docker/xeon/README.md) for details. + ### Setup Environment Variable To set up environment variables for deploying ChatQnA services, follow these steps: diff --git a/ChatQnA/docker/gaudi/README.md b/ChatQnA/docker/gaudi/README.md index 2b49a33f4..a0953f768 100644 --- a/ChatQnA/docker/gaudi/README.md +++ b/ChatQnA/docker/gaudi/README.md @@ -188,6 +188,31 @@ By default, the embedding, reranking and LLM models are set to a default value a Change the `xxx_MODEL_ID` below for your needs. +For customers with proxy issues, the models from [ModelScope](https://www.modelscope.cn/models) are also supported in ChatQnA with TGI serving. ModelScope models are supported in two ways for TGI: + +1. Online + + ```bash + export HF_TOKEN=${your_hf_token} + export HF_ENDPOINT="https://hf-mirror.com" + model_name="Intel/neural-chat-7b-v3-3" + docker run -p 8008:80 -v ./data:/data --name tgi-service -e HF_ENDPOINT=$HF_ENDPOINT -e http_proxy=$http_proxy -e https_proxy=$https_proxy --shm-size 1g ghcr.io/huggingface/text-generation-inference:2.1.0 --model-id $model_name + ``` + +2. Offline + + - Search your model name in ModelScope. For example, check [this page](https://www.modelscope.cn/models/ai-modelscope/neural-chat-7b-v3-1/files) for model `neural-chat-7b-v3-1`. + + - Click on `Download this model` button, and choose one way to download the model to your local path `/path/to/model`. + + - Run the following command to start TGI service. + + ```bash + export HF_TOKEN=${your_hf_token} + export model_path="/path/to/model" + docker run -p 8008:80 -v $model_path:/data --name tgi_service --shm-size 1g ghcr.io/huggingface/text-generation-inference:2.1.0 --model-id /data + ``` + ### Setup Environment Variables Since the `compose.yaml` will consume some environment variables, you need to setup them in advance as below. diff --git a/ChatQnA/docker/xeon/README.md b/ChatQnA/docker/xeon/README.md index 91e1eddac..44de4b3a0 100644 --- a/ChatQnA/docker/xeon/README.md +++ b/ChatQnA/docker/xeon/README.md @@ -188,6 +188,31 @@ By default, the embedding, reranking and LLM models are set to a default value a Change the `xxx_MODEL_ID` below for your needs. +For customers with proxy issues, the models from [ModelScope](https://www.modelscope.cn/models) are also supported in ChatQnA with TGI serving. ModelScope models are supported in two ways for TGI: + +1. Online + + ```bash + export HF_TOKEN=${your_hf_token} + export HF_ENDPOINT="https://hf-mirror.com" + model_name="Intel/neural-chat-7b-v3-3" + docker run -p 8008:80 -v ./data:/data --name tgi-service -e HF_ENDPOINT=$HF_ENDPOINT -e http_proxy=$http_proxy -e https_proxy=$https_proxy --shm-size 1g ghcr.io/huggingface/text-generation-inference:2.1.0 --model-id $model_name + ``` + +2. Offline + + - Search your model name in ModelScope. For example, check [this page](https://www.modelscope.cn/models/ai-modelscope/neural-chat-7b-v3-1/files) for model `neural-chat-7b-v3-1`. + + - Click on `Download this model` button, and choose one way to download the model to your local path `/path/to/model`. + + - Run the following command to start TGI service. + + ```bash + export HF_TOKEN=${your_hf_token} + export model_path="/path/to/model" + docker run -p 8008:80 -v $model_path:/data --name tgi_service --shm-size 1g ghcr.io/huggingface/text-generation-inference:2.1.0 --model-id /data + ``` + ### Setup Environment Variables Since the `compose.yaml` will consume some environment variables, you need to setup them in advance as below.