Skip to content

Commit

Permalink
AgentQnA example (#601)
Browse files Browse the repository at this point in the history
* initial code and readme for hierarchical agent example

* agent test with openai llm passed

* update readme and add test

* update test

* [pre-commit.ci] auto fixes from pre-commit.com hooks

for more information, see https://pre-commit.ci

* change example name and update docker yaml

Signed-off-by: minmin-intel <[email protected]>

* [pre-commit.ci] auto fixes from pre-commit.com hooks

for more information, see https://pre-commit.ci

* change diagram name and test script name

Signed-off-by: minmin-intel <[email protected]>

* [pre-commit.ci] auto fixes from pre-commit.com hooks

for more information, see https://pre-commit.ci

* update test

---------

Signed-off-by: minmin-intel <[email protected]>
Co-authored-by: pre-commit-ci[bot] <66853113+pre-commit-ci[bot]@users.noreply.github.com>
  • Loading branch information
minmin-intel and pre-commit-ci[bot] authored Aug 21, 2024
1 parent 46af6f3 commit 67df280
Show file tree
Hide file tree
Showing 9 changed files with 703 additions and 0 deletions.
106 changes: 106 additions & 0 deletions AgentQnA/README.md
Original file line number Diff line number Diff line change
@@ -0,0 +1,106 @@
# Agents for Question Answering

## Overview

This example showcases a hierarchical multi-agent system for question-answering applications. The architecture diagram is shown below. The supervisor agent interfaces with the user and dispatch tasks to the worker agent and other tools to gather information and come up with answers. The worker agent uses the retrieval tool to generate answers to the queries posted by the supervisor agent. Other tools used by the supervisor agent may include APIs to interface knowledge graphs, SQL databases, external knowledge bases, etc.
![Architecture Overview](assets/agent_qna_arch.png)

### Why Agent for question answering?

1. Improve relevancy of retrieved context.
Agent can rephrase user queries, decompose user queries, and iterate to get the most relevant context for answering user's questions. Compared to conventional RAG, RAG agent can significantly improve the correctness and relevancy of the answer.
2. Use tools to get additional knowledge.
For example, knowledge graphs and SQL databases can be exposed as APIs for Agents to gather knowledge that may be missing in the retrieval vector database.
3. Hierarchical agent can further improve performance.
Expert worker agents, such as retrieval agent, knowledge graph agent, SQL agent, etc., can provide high-quality output for different aspects of a complex query, and the supervisor agent can aggregate the information together to provide a comprehensive answer.

### Roadmap

- v0.9: Worker agent uses open-source websearch tool (duckduckgo), agents use OpenAI GPT-4o-mini as llm backend.
- v1.0: Worker agent uses OPEA retrieval megaservice as tool.
- v1.0 or later: agents use open-source llm backend.
- v1.1 or later: add safeguards

## Getting started

1. Build agent docker image </br>
First, clone the opea GenAIComps repo

```
export WORKDIR=<your-work-directory>
cd $WORKDIR
git clone https://github.com/opea-project/GenAIComps.git
```

Then build the agent docker image. Both the supervisor agent and the worker agent will use the same docker image, but when we launch the two agents we will specify different strategies and register different tools.

```
cd GenAIComps
docker build -t opea/comps-agent-langchain:latest --build-arg https_proxy=$https_proxy --build-arg http_proxy=$http_proxy -f comps/agent/langchain/docker/Dockerfile .
```

2. Launch tool services </br>
In this example, we will use some of the mock APIs provided in the Meta CRAG KDD Challenge to demonstrate the benefits of gaining additional context from mock knowledge graphs.

```
docker run -d -p=8080:8000 docker.io/aicrowd/kdd-cup-24-crag-mock-api:v0
```

3. Set up environment for this example </br>
First, clone this repo

```
cd $WORKDIR
git clone https://github.com/opea-project/GenAIExamples.git
```

Second, set up env vars

```
export TOOLSET_PATH=$WORKDIR/GenAIExamples/AgentQnA/tools/
# optional: OPANAI_API_KEY
export OPENAI_API_KEY=<your-openai-key>
```

4. Launch agent services</br>
The configurations of the supervisor agent and the worker agent are defined in the docker-compose yaml file. We currently use openAI GPT-4o-mini as LLM, and we plan to add support for llama3.1-70B-instruct (served by TGI-Gaudi) in a subsequent release.
To use openai llm, run command below.

```
cd docker/openai/
bash launch_agent_service_openai.sh
```

## Validate services

First look at logs of the agent docker containers:

```
docker logs docgrader-agent-endpoint
```

```
docker logs react-agent-endpoint
```

You should see something like "HTTP server setup successful" if the docker containers are started successfully.</p>

Second, validate worker agent:

```
curl http://${ip_address}:9095/v1/chat/completions -X POST -H "Content-Type: application/json" -d '{
"query": "Most recent album by Taylor Swift"
}'
```

Third, validate supervisor agent:

```
curl http://${ip_address}:9090/v1/chat/completions -X POST -H "Content-Type: application/json" -d '{
"query": "Most recent album by Taylor Swift"
}'
```

## How to register your own tools with agent

You can take a look at the tools yaml and python files in this example. For more details, please refer to the "Provide your own tools" section in the instructions [here](https://github.com/minmin-intel/GenAIComps/tree/agent-comp-dev/comps/agent/langchain#-4-provide-your-own-tools).
Binary file added AgentQnA/assets/agent_qna_arch.png
Loading
Sorry, something went wrong. Reload?
Sorry, we cannot display this file.
Sorry, this file is invalid so it cannot be displayed.
63 changes: 63 additions & 0 deletions AgentQnA/docker/openai/docker-compose-agent-openai.yaml
Original file line number Diff line number Diff line change
@@ -0,0 +1,63 @@
# Copyright (C) 2024 Intel Corporation
# SPDX-License-Identifier: Apache-2.0

services:
worker-docgrader-agent:
image: opea/comps-agent-langchain:latest
container_name: docgrader-agent-endpoint
volumes:
- ${WORKDIR}/GenAIComps/comps/agent/langchain/:/home/user/comps/agent/langchain/
- ${TOOLSET_PATH}:/home/user/tools/
ports:
- "9095:9095"
ipc: host
environment:
ip_address: ${ip_address}
strategy: rag_agent
recursion_limit: ${recursion_limit}
llm_engine: openai
OPENAI_API_KEY: ${OPENAI_API_KEY}
model: ${model}
temperature: ${temperature}
max_new_tokens: ${max_new_tokens}
streaming: false
tools: /home/user/tools/worker_agent_tools.yaml
require_human_feedback: false
no_proxy: ${no_proxy}
http_proxy: ${http_proxy}
https_proxy: ${https_proxy}
LANGCHAIN_API_KEY: ${LANGCHAIN_API_KEY}
LANGCHAIN_TRACING_V2: ${LANGCHAIN_TRACING_V2}
LANGCHAIN_PROJECT: "opea-worker-agent-service"
port: 9095

supervisor-react-agent:
image: opea/comps-agent-langchain:latest
container_name: react-agent-endpoint
volumes:
- ${WORKDIR}/GenAIComps/comps/agent/langchain/:/home/user/comps/agent/langchain/
- ${TOOLSET_PATH}:/home/user/tools/
ports:
- "9090:9090"
ipc: host
environment:
ip_address: ${ip_address}
strategy: react_langgraph
recursion_limit: ${recursion_limit}
llm_engine: openai
OPENAI_API_KEY: ${OPENAI_API_KEY}
model: ${model}
temperature: ${temperature}
max_new_tokens: ${max_new_tokens}
streaming: ${streaming}
tools: /home/user/tools/supervisor_agent_tools.yaml
require_human_feedback: false
no_proxy: ${no_proxy}
http_proxy: ${http_proxy}
https_proxy: ${https_proxy}
LANGCHAIN_API_KEY: ${LANGCHAIN_API_KEY}
LANGCHAIN_TRACING_V2: ${LANGCHAIN_TRACING_V2}
LANGCHAIN_PROJECT: "opea-supervisor-agent-service"
CRAG_SERVER: $CRAG_SERVER
WORKER_AGENT_URL: $WORKER_AGENT_URL
port: 9090
13 changes: 13 additions & 0 deletions AgentQnA/docker/openai/launch_agent_service_openai.sh
Original file line number Diff line number Diff line change
@@ -0,0 +1,13 @@
# Copyright (C) 2024 Intel Corporation
# SPDX-License-Identifier: Apache-2.0

export ip_address=$(hostname -I | awk '{print $1}')
export recursion_limit=12
export model="gpt-4o-mini-2024-07-18"
export temperature=0
export max_new_tokens=512
export OPENAI_API_KEY=${OPENAI_API_KEY}
export WORKER_AGENT_URL="http://${ip_address}:9095/v1/chat/completions"
export CRAG_SERVER=http://${ip_address}:8080

docker compose -f docker-compose-agent-openai.yaml up -d
75 changes: 75 additions & 0 deletions AgentQnA/tests/_test_agentqna_on_xeon.sh
Original file line number Diff line number Diff line change
@@ -0,0 +1,75 @@
#!/bin/bash
# Copyright (C) 2024 Intel Corporation
# SPDX-License-Identifier: Apache-2.0

set -e
echo "IMAGE_REPO=${IMAGE_REPO}"
echo "OPENAI_API_KEY=${OPENAI_API_KEY}"

WORKPATH=$(dirname "$PWD")
export WORKDIR=$WORKPATH/../../
echo "WORKDIR=${WORKDIR}"
export ip_address=$(hostname -I | awk '{print $1}')
export TOOLSET_PATH=$WORKDIR/GenAIExamples/AgentQnA/tools/

function build_agent_docker_image() {
cd $WORKDIR
if [ ! -d "GenAIComps" ] ; then
git clone https://github.com/opea-project/GenAIComps.git
fi
cd GenAIComps
echo PWD: $(pwd)
docker build -t opea/comps-agent-langchain:latest --build-arg https_proxy=$https_proxy --build-arg http_proxy=$http_proxy -f comps/agent/langchain/docker/Dockerfile .
}

function start_services() {
echo "Starting CRAG server"
docker run -d -p=8080:8000 docker.io/aicrowd/kdd-cup-24-crag-mock-api:v0
echo "Starting Agent services"
cd $WORKDIR/GenAIExamples/AgentQnA/docker/openai
bash launch_agent_service_openai.sh
}

function validate() {
local CONTENT="$1"
local EXPECTED_RESULT="$2"
local SERVICE_NAME="$3"

if echo "$CONTENT" | grep -q "$EXPECTED_RESULT"; then
echo "[ $SERVICE_NAME ] Content is as expected: $CONTENT"
echo 0
else
echo "[ $SERVICE_NAME ] Content does not match the expected result: $CONTENT"
echo 1
fi
}


function run_tests() {
echo "----------------Test supervisor agent ----------------"
local CONTENT=$(http_proxy="" curl http://${ip_address}:9090/v1/chat/completions -X POST -H "Content-Type: application/json" -d '{
"query": "Most recent album by Taylor Swift"
}')
local EXIT_CODE=$(validate "$CONTENT" "Taylor" "react-agent-endpoint")
docker logs react-agent-endpoint
if [ "$EXIT_CODE" == "1" ]; then
exit 1
fi

}

function stop_services() {
echo "Stopping CRAG server"
docker stop $(docker ps -q --filter ancestor=docker.io/aicrowd/kdd-cup-24-crag-mock-api:v0)
echo "Stopping Agent services"
docker stop $(docker ps -q --filter ancestor=opea/comps-agent-langchain:latest)
}

function main() {
build_agent_docker_image
start_services
run_tests
stop_services
}

main
Loading

0 comments on commit 67df280

Please sign in to comment.