This document outlines the deployment process for a Document Summarization application utilizing the GenAIComps microservice pipeline on an Intel Xeon server. The steps include Docker image creation, container deployment via Docker Compose, and service execution to integrate microservices such as llm
. We will publish the Docker images to Docker Hub soon, which will simplify the deployment process for this service.
To apply a Intel Xeon server on AWS, start by creating an AWS account if you don't have one already. Then, head to the EC2 Console to begin the process. Within the EC2 service, select the Amazon EC2 M7i or M7i-flex instance type to leverage 4th Generation Intel Xeon Scalable processors. These instances are optimized for high-performance computing and demanding workloads.
For detailed information about these instance types, you can refer to this link. Once you've chosen the appropriate instance type, proceed with configuring your instance settings, including network configurations, security groups, and storage options.
After launching your instance, you can connect to it using SSH (for Linux instances) or Remote Desktop Protocol (RDP) (for Windows instances). From there, you'll have full access to your Xeon server, allowing you to install, configure, and manage your applications as needed.
First of all, you need to build Docker Images locally and install the python package of it.
git clone https://github.com/opea-project/GenAIComps.git
cd GenAIComps
The Whisper Service converts audio files to text. Follow these steps to build and run the service:
docker build -t opea/whisper:latest --build-arg https_proxy=$https_proxy --build-arg http_proxy=$http_proxy -f comps/asr/whisper/dependency/Dockerfile .
The Audio to text Service is another service for converting audio to text. Follow these steps to build and run the service:
docker build -t opea/dataprep-audio2text:latest --build-arg https_proxy=$https_proxy --build-arg http_proxy=$http_proxy -f comps/dataprep/multimedia2text/audio2text/Dockerfile .
The Video to Audio Service extracts audio from video files. Follow these steps to build and run the service:
docker build -t opea/dataprep-video2audio:latest --build-arg https_proxy=$https_proxy --build-arg http_proxy=$http_proxy -f comps/dataprep/multimedia2text/video2audio/Dockerfile .
The Multimedia to Text Service transforms multimedia data to text data. Follow these steps to build and run the service:
docker build -t opea/dataprep-multimedia2text:latest --build-arg https_proxy=$https_proxy --build-arg http_proxy=$http_proxy -f comps/dataprep/multimedia2text/Dockerfile .
To construct the Mega Service, we utilize the GenAIComps microservice pipeline within the docsum.py
Python script. Build the MegaService Docker image via below command:
git clone https://github.com/opea-project/GenAIExamples
cd GenAIExamples/DocSum/
docker build -t opea/docsum:latest --build-arg https_proxy=$https_proxy --build-arg http_proxy=$http_proxy -f Dockerfile .
Several UI options are provided. If you need to work with multimedia documents, .doc, or .pdf files, suggested to use Gradio UI.
Build the Gradio UI frontend Docker image using the following command:
cd GenAIExamples/DocSum/ui
docker build -t opea/docsum-gradio-ui:latest --build-arg https_proxy=$https_proxy --build-arg http_proxy=$http_proxy -f docker/Dockerfile.gradio .
Build the frontend Docker image via below command:
cd GenAIExamples/DocSum/ui
docker build -t opea/docsum-ui:latest --build-arg https_proxy=$https_proxy --build-arg http_proxy=$http_proxy -f docker/Dockerfile .
Build the frontend Docker image via below command:
cd GenAIExamples/DocSum/ui
export BACKEND_SERVICE_ENDPOINT="http://${host_ip}:8888/v1/docsum"
docker build -t opea/docsum-react-ui:latest --build-arg BACKEND_SERVICE_ENDPOINT=$BACKEND_SERVICE_ENDPOINT -f ./docker/Dockerfile.react .
docker build -t opea/docsum-react-ui:latest --build-arg BACKEND_SERVICE_ENDPOINT=$BACKEND_SERVICE_ENDPOINT --build-arg https_proxy=$https_proxy --build-arg http_proxy=$http_proxy -f ./docker/Dockerfile.react .
Default model is "Intel/neural-chat-7b-v3-3". Change "LLM_MODEL_ID" environment variable in commands below if you want to use another model.
export LLM_MODEL_ID="Intel/neural-chat-7b-v3-3"
When using gated models, you also need to provide HuggingFace token to "HUGGINGFACEHUB_API_TOKEN" environment variable.
To set up environment variables for deploying Document Summarization services, follow these steps:
-
Set the required environment variables:
# Example: host_ip="192.168.1.1" export host_ip="External_Public_IP" # Example: no_proxy="localhost, 127.0.0.1, 192.168.1.1" export no_proxy="Your_No_Proxy" export HUGGINGFACEHUB_API_TOKEN="Your_Huggingface_API_Token"
-
If you are in a proxy environment, also set the proxy-related environment variables:
export http_proxy="Your_HTTP_Proxy" export https_proxy="Your_HTTPs_Proxy"
-
Set up other environment variables:
source GenAIExamples/DocSum/docker_compose/set_env.sh
cd GenAIExamples/DocSum/docker_compose/intel/cpu/xeon
docker compose -f compose.yaml up -d
You will have the following Docker Images:
opea/docsum-ui:latest
opea/docsum:latest
opea/llm-docsum-tgi:latest
opea/whisper:latest
opea/dataprep-audio2text:latest
opea/dataprep-multimedia2text:latest
opea/dataprep-video2audio:latest
-
TGI Service
curl http://${host_ip}:8008/generate \ -X POST \ -d '{"inputs":"What is Deep Learning?","parameters":{"max_new_tokens":17, "do_sample": true}}' \ -H 'Content-Type: application/json'
-
LLM Microservice
curl http://${host_ip}:9000/v1/chat/docsum \ -X POST \ -d '{"query":"Text Embeddings Inference (TEI) is a toolkit for deploying and serving open source text embeddings and sequence classification models. TEI enables high-performance extraction for the most popular models, including FlagEmbedding, Ember, GTE and E5."}' \ -H 'Content-Type: application/json'
-
Whisper Microservice
curl http://${host_ip}:7066/v1/asr \ -X POST \ -d '{"audio":"UklGRigAAABXQVZFZm10IBIAAAABAAEARKwAAIhYAQACABAAAABkYXRhAgAAAAEA"}' \ -H 'Content-Type: application/json'
Expected output:
{"asr_result":"you"}
-
Audio2Text Microservice
curl http://${host_ip}:9099/v1/audio/transcriptions \ -X POST \ -d '{"byte_str":"UklGRigAAABXQVZFZm10IBIAAAABAAEARKwAAIhYAQACABAAAABkYXRhAgAAAAEA"}' \ -H 'Content-Type: application/json'
Expected output:
{"downstream_black_list":[],"id":"--> this will be different id number for each run <--","query":"you"}
-
Multimedia to text Microservice
curl http://${host_ip}:7079/v1/multimedia2text \ -X POST \ -d '{"audio":"UklGRigAAABXQVZFZm10IBIAAAABAAEARKwAAIhYAQACABAAAABkYXRhAgAAAAEA"}' \ -H 'Content-Type: application/json'
Expected output:
{"downstream_black_list":[],"id":"--> this will be different id number for each run <--","query":"you"}
-
MegaService
Text:
## json input curl -X POST http://${host_ip}:8888/v1/docsum \ -H "Content-Type: application/json" \ -d '{"type": "text", "messages": "Text Embeddings Inference (TEI) is a toolkit for deploying and serving open source text embeddings and sequence classification models. TEI enables high-performance extraction for the most popular models, including FlagEmbedding, Ember, GTE and E5."}' # form input, use English mode (default). curl http://${host_ip}:8888/v1/docsum \ -H "Content-Type: multipart/form-data" \ -F "type=text" \ -F "messages=Text Embeddings Inference (TEI) is a toolkit for deploying and serving open source text embeddings and sequence classification models. TEI enables high-performance extraction for the most popular models, including FlagEmbedding, Ember, GTE and E5." \ -F "max_tokens=32" \ -F "language=en" \ -F "stream=true" # Use Chinese mode. curl http://${host_ip}:8888/v1/docsum \ -H "Content-Type: multipart/form-data" \ -F "type=text" \ -F "messages=2024年9月26日,北京——今日,英特尔正式发布英特尔® 至强® 6性能核处理器(代号Granite Rapids),为AI、数据分析、科学计算等计算密集型业务提供卓越性能。" \ -F "max_tokens=32" \ -F "language=zh" \ -F "stream=true" # Upload file curl http://${host_ip}:8888/v1/docsum \ -H "Content-Type: multipart/form-data" \ -F "type=text" \ -F "messages=" \ -F "files=@/path to your file (.txt, .docx, .pdf)" \ -F "max_tokens=32" \ -F "language=en" \ -F "stream=true"
Audio and Video file uploads are not supported in docsum with curl request, please use the Gradio-UI.
Audio:
curl -X POST http://${host_ip}:8888/v1/docsum \ -H "Content-Type: application/json" \ -d '{"type": "audio", "messages": "UklGRigAAABXQVZFZm10IBIAAAABAAEARKwAAIhYAQACABAAAABkYXRhAgAAAAEA"}' curl http://${host_ip}:8888/v1/docsum \ -H "Content-Type: multipart/form-data" \ -F "type=audio" \ -F "messages=UklGRigAAABXQVZFZm10IBIAAAABAAEARKwAAIhYAQACABAAAABkYXRhAgAAAAEA" \ -F "max_tokens=32" \ -F "language=en" \ -F "stream=true"
Video:
curl -X POST http://${host_ip}:8888/v1/docsum \ -H "Content-Type: application/json" \ -d '{"type": "video", "messages": "convert your video to base64 data type"}' curl http://${host_ip}:8888/v1/docsum \ -H "Content-Type: multipart/form-data" \ -F "type=video" \ -F "messages=convert your video to base64 data type" \ -F "max_tokens=32" \ -F "language=en" \ -F "stream=true"
-
MegaService with long context
If you want to deal with long context, can set following parameters and select suitable summary type.
- "summary_type": can be "auto", "stuff", "truncate", "map_reduce", "refine", default is "auto"
- "chunk_size": max token length for each chunk. Set to be different default value according to "summary_type".
- "chunk_overlap": overlap token length between each chunk, default is 0.1*chunk_size
summary_type=auto
"summary_type" is set to be "auto" by default, in this mode we will check input token length, if it exceed
MAX_INPUT_TOKENS
,summary_type
will automatically be set torefine
mode, otherwise will be set tostuff
mode.curl http://${host_ip}:8888/v1/docsum \ -H "Content-Type: multipart/form-data" \ -F "type=text" \ -F "messages=" \ -F "max_tokens=32" \ -F "files=@/path to your file (.txt, .docx, .pdf)" \ -F "language=en" \ -F "summary_type=auto"
summary_type=stuff
In this mode LLM generate summary based on complete input text. In this case please carefully set
MAX_INPUT_TOKENS
andMAX_TOTAL_TOKENS
according to your model and device memory, otherwise it may exceed LLM context limit and raise error when meet long context.curl http://${host_ip}:8888/v1/docsum \ -H "Content-Type: multipart/form-data" \ -F "type=text" \ -F "messages=" \ -F "max_tokens=32" \ -F "files=@/path to your file (.txt, .docx, .pdf)" \ -F "language=en" \ -F "summary_type=stuff"
summary_type=truncate
Truncate mode will truncate the input text and keep only the first chunk, whose length is equal to
min(MAX_TOTAL_TOKENS - input.max_tokens - 50, MAX_INPUT_TOKENS)
curl http://${host_ip}:8888/v1/docsum \ -H "Content-Type: multipart/form-data" \ -F "type=text" \ -F "messages=" \ -F "max_tokens=32" \ -F "files=@/path to your file (.txt, .docx, .pdf)" \ -F "language=en" \ -F "summary_type=truncate"
summary_type=map_reduce
Map_reduce mode will split the inputs into multiple chunks, map each document to an individual summary, then consolidate those summaries into a single global summary.
streaming=True
is not allowed here.In this mode, default
chunk_size
is set to bemin(MAX_TOTAL_TOKENS - input.max_tokens - 50, MAX_INPUT_TOKENS)
curl http://${host_ip}:8888/v1/docsum \ -H "Content-Type: multipart/form-data" \ -F "type=text" \ -F "messages=" \ -F "max_tokens=32" \ -F "files=@/path to your file (.txt, .docx, .pdf)" \ -F "language=en" \ -F "summary_type=map_reduce"
summary_type=refine
Refin mode will split the inputs into multiple chunks, generate summary for the first one, then combine with the second, loops over every remaining chunks to get the final summary.
In this mode, default
chunk_size
is set to bemin(MAX_TOTAL_TOKENS - 2 * input.max_tokens - 128, MAX_INPUT_TOKENS)
.curl http://${host_ip}:8888/v1/docsum \ -H "Content-Type: multipart/form-data" \ -F "type=text" \ -F "messages=" \ -F "max_tokens=32" \ -F "files=@/path to your file (.txt, .docx, .pdf)" \ -F "language=en" \ -F "summary_type=refine"
Several UI options are provided. If you need to work with multimedia documents, .doc, or .pdf files, suggested to use Gradio UI.
Open this URL http://{host_ip}:5173
in your browser to access the Gradio based frontend.
Open this URL http://{host_ip}:5173
in your browser to access the Svelte based frontend.
Open this URL http://{host_ip}:5174
in your browser to access the React based frontend.
To access the React-based frontend, modify the UI service in the compose.yaml
file. Replace docsum-xeon-ui-server
service with the docsum-xeon-react-ui-server
service as per the config below:
docsum-xeon-react-ui-server:
image: ${REGISTRY:-opea}/docsum-react-ui:${TAG:-latest}
container_name: docsum-xeon-react-ui-server
depends_on:
- docsum-xeon-backend-server
ports:
- "5174:80"
environment:
- no_proxy=${no_proxy}
- https_proxy=${https_proxy}
- http_proxy=${http_proxy}
ipc: host
restart: always