-
Notifications
You must be signed in to change notification settings - Fork 2
/
Copy pathexperiment_sample_or_size.py
209 lines (177 loc) · 10.8 KB
/
experiment_sample_or_size.py
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
import argparse
import json
import os
import numpy as np
import torch
import torch.nn as nn
from torch.optim.lr_scheduler import ReduceLROnPlateau
from model import Transformer
from data import Dataset_Basic, DataLoader
from utils import append_positional_encoding, identity_pe, get_pe, get_loss
def run_experiment(target, data, device, experiment: str = 'sample_complexity', i: int = 0):
"""Run experiment with given parameters and return final losses for standard and positional transformer
Args:
target (str): target function to learn (one of 'sum', 'min', 'median', 'sort', 'minsum')
data (dict): dictionary containing parameters for the experiment
device (torch.device): device to run the experiment on
experiment (str, optional): type of experiment (one of 'sample_complexity', 'scale_generalization`,
`size`). Defaults to 'sample_complexity'.
i (int, optional): If sample_complexity is True, this is the index of data['num_train_samples']. Otherwise
it the index of data['low_test'] and data['high_test']. Defaults to 0.
"""
n = data['n'][i] if experiment=='size' else data['n'][0]
num_train_samples = data['num_train_samples'][i] if experiment=='sample_complexity' else data['num_train_samples'][0]
num_test_samples = data['num_test_samples']
num_additional_node = data['num_additional_node']
lr = data['lr']
batch_size = data['batch_size']
shuffling = data['shuffling']
low_train = data['low_train']
high_train = data['high_train']
low_test = data['low_test'][i] if experiment=='scale_generalization' else data['low_test'][0]
high_test = data['high_test'][i] if experiment=='scale_generalization' else data['high_test'][0]
cumulative = data['cumulative']
use_integer = data['use_integer']
variable_length = data['variable_length'] if 'variable_length' in data else False
if target == 'minsum':
pos_enc_base = identity_pe(2*n+num_additional_node).to(device)
else:
pos_enc_base = identity_pe(n+num_additional_node).to(device)
if target == 'path':
data_dim = n
else:
data_dim = 1
in_dim_s = data_dim + pos_enc_base.size(1)
in_dim_p = data_dim
out_dim = data_dim
embed_dim = data['embed_dim']
num_heads = data['num_heads']
use_rope = data['RoPE'] if 'RoPE' in data else False
num_layers = np.log2(n).astype(int) + 1 if 'model_num_layers' not in data else data['model_num_layers']
mlp_hidden_dim = data['mlp_hidden_dim']
mlp_num_layers = data['mlp_num_layers']
epochs = data['epochs']
final_losses_s = []
final_losses_p = []
for run in range(data['runs']):
print(f"Run {run+1} / {data['runs']}:")
train_dataset = Dataset_Basic(num_samples=num_train_samples, length=n, low=low_train, high=high_train, target=target, use_integer=use_integer, cumulative=cumulative, num_additional_node=num_additional_node, variable_length=variable_length)
val_dataset = Dataset_Basic(num_samples=num_test_samples, length=n, low=low_train, high=high_train, target=target, use_integer=use_integer, cumulative=cumulative, num_additional_node=num_additional_node, variable_length=variable_length)
test_dataset = Dataset_Basic(num_samples=num_test_samples, length=n, low=low_test, high=high_test, target=target, use_integer=use_integer, cumulative=cumulative, num_additional_node=num_additional_node, reject_low=low_train, reject_high=high_train, variable_length=variable_length)
train_loader = DataLoader(train_dataset, batch_size=batch_size, shuffle=shuffling, variable_length=variable_length)
val_loader = DataLoader(val_dataset, batch_size=batch_size, shuffle=False, variable_length=variable_length)
test_loader = DataLoader(test_dataset, batch_size=batch_size, shuffle=False, variable_length=variable_length)
model_s = Transformer(in_dim=in_dim_s, embed_dim=embed_dim, out_dim=out_dim, num_heads=num_heads, num_layers=num_layers,
mlp_hidden_dim=mlp_hidden_dim, mlp_num_layers=mlp_num_layers, positional=False, RoPE=use_rope, pos_dim=pos_enc_base.size(1)).to(device)
model_p = Transformer(in_dim=in_dim_p, embed_dim=embed_dim, out_dim=out_dim, num_heads=num_heads, num_layers=num_layers,
mlp_hidden_dim=mlp_hidden_dim, mlp_num_layers=mlp_num_layers, positional=True, pos_dim=pos_enc_base.size(1)).to(device)
optimizer_s = torch.optim.Adam(model_s.parameters(), lr=lr, weight_decay=data["weight_decay"])
optimizer_p = torch.optim.Adam(model_p.parameters(), lr=lr, weight_decay=data["weight_decay"])
scheduler_s = ReduceLROnPlateau(optimizer_s, mode='min', patience=50, factor=0.9, min_lr=1.0e-6)
scheduler_p = ReduceLROnPlateau(optimizer_p, mode='min', patience=50, factor=0.9, min_lr=1.0e-6)
criterion = nn.MSELoss()
for epoch in range(epochs):
model_s.train()
model_p.train()
train_loss_s = 0
train_loss_p = 0
loss_s = 0
loss_p = 0
for (x, y) in train_loader:
x, y = x.to(device), y.to(device)
pos_enc = get_pe(pos_enc_base, x, num_additional_node) if variable_length else pos_enc_base
x_app = append_positional_encoding(x, pos_enc)
optimizer_s.zero_grad()
out = model_s(x_app, p=pos_enc)
loss_s = get_loss(criterion, out, y, num_additional_node, n, target)
loss_s.backward()
optimizer_s.step()
train_loss_s += loss_s.item()
optimizer_p.zero_grad()
out = model_p(x, p=pos_enc)
loss_p = get_loss(criterion, out, y, num_additional_node, n, target)
loss_p.backward()
optimizer_p.step()
train_loss_p += loss_p.item()
scheduler_s.step(train_loss_s)
scheduler_p.step(train_loss_p)
if epoch % 10 == 0:
with torch.no_grad():
val_loss_s, test_loss_s = 0, 0
val_loss_p, test_loss_p = 0, 0
for (x, y) in val_loader:
x, y = x.to(device), y.to(device)
pos_enc = get_pe(pos_enc_base, x, num_additional_node) if variable_length else pos_enc_base
x_app = append_positional_encoding(x, pos_enc)
out = model_s(x_app, p=pos_enc)
val_loss_s += get_loss(criterion, out, y, num_additional_node, n, target).item()
out = model_p(x, p=pos_enc)
val_loss_p += get_loss(criterion, out, y, num_additional_node, n, target).item()
for (x, y) in test_loader:
x, y = x.to(device), y.to(device)
pos_enc = get_pe(pos_enc_base, x, num_additional_node) if variable_length else pos_enc_base
x_app = append_positional_encoding(x, pos_enc)
out = model_s(x_app, p=pos_enc)
test_loss_s += get_loss(criterion, out, y, num_additional_node, n, target).item()
out = model_p(x, p=pos_enc)
test_loss_p += get_loss(criterion, out, y, num_additional_node, n, target).item()
train_loss_s /= len(train_loader)
train_loss_p /= len(train_loader)
val_loss_s /= len(val_loader)
val_loss_p /= len(val_loader)
print(f"Epoch {epoch}, standard train/val/test: {train_loss_s:.4e}/{val_loss_s:.4e}/{test_loss_s}, positional train/val/test: {train_loss_p:.4e}/{val_loss_p:.4e}/{test_loss_p:.4e}")
if epoch == epochs-1:
final_losses_s.append((train_loss_s, val_loss_s, test_loss_s))
final_losses_p.append((train_loss_p, val_loss_p, test_loss_p))
if epoch % 100 == 0:
print("Learning rate for standard transformer: ", optimizer_s.param_groups[0]['lr'])
print("Learning rate for positional transformer: ", optimizer_p.param_groups[0]['lr'])
return final_losses_s, final_losses_p
if __name__ == '__main__':
argparser = argparse.ArgumentParser()
argparser.add_argument('--savepath', type=str, required=True)
argparser.add_argument('--params', type=str, required=True)
argparser.add_argument('--task', type=str, required=True)
args = argparser.parse_args()
print("PyTorch version:", torch.__version__)
print("Access to GPU:", torch.cuda.is_available())
device = torch.device('cuda' if torch.cuda.is_available() else 'cpu')
with open(args.params, 'r') as fp:
data = json.load(fp)
os.makedirs(args.savepath, exist_ok=True)
with open(args.savepath + "/params.json", 'w') as fp:
json.dump(data, fp)
experiment = 'size'
times = len(data['n'])
if len(data['num_train_samples']) > 1:
experiment = 'sample_complexity'
times = len(data['num_train_samples'])
if len(data['low_test']) > 1:
assert len(data['low_test']) == len(data['high_test']), "Length of low_test and high_test should be the same"
experiment = 'scale_generalization'
times = len(data['low_test'])
variable_length = data['variable_length'] if 'variable_length' in data else False
use_rope = data['RoPE'] if 'RoPE' in data else False
print(f"Experiment: {experiment}")
print(f"Task: {args.task}")
print(f"Variable length: {variable_length}")
print(f"Using RoPE: {use_rope}")
for i in range(times):
n = data['n'][i] if experiment=='size' else data['n'][0]
num_train_samples = data['num_train_samples'][i] if experiment=='sample_complexity' else data['num_train_samples'][0]
low_test = data['low_test'][i] if experiment=='scale_generalization' else data['low_test'][0]
high_test = data['high_test'][i] if experiment=='scale_generalization' else data['high_test'][0]
print(f"n: {n}, Training samples: {num_train_samples}, Test range: [{low_test}, {high_test}]")
final_losses_s, final_losses_p = run_experiment(args.task, data, device, experiment=experiment, i=i)
print("===============================================")
filename = f"/train_val_test_n{n}_l{low_test}_h{high_test}_samples{num_train_samples}"
filename_s = args.savepath + filename + "_standard.txt"
filename_p = args.savepath + filename + "_positional.txt"
os.makedirs(os.path.dirname(filename_s), exist_ok=True)
os.makedirs(os.path.dirname(filename_p), exist_ok=True)
with open(filename_s, 'w') as f:
for item in final_losses_s:
print(f"{item[0]}\t{item[1]}\t{item[2]}", file=f)
with open(filename_p, 'w') as f:
for item in final_losses_p:
print(f"{item[0]}\t{item[1]}\t{item[2]}", file=f)