diff --git a/CONTRIBUTING.md b/CONTRIBUTING.md index 1fa69b6b59e..3e1c454feff 100644 --- a/CONTRIBUTING.md +++ b/CONTRIBUTING.md @@ -75,29 +75,11 @@ CUDA requirement: You can obtain CUDA from [https://developer.nvidia.com/cuda-downloads](https://developer.nvidia.com/cuda-downloads). -Since `cmake` will download and build Apache Arrow you may need to install Boost C++ (version 1.58+) before running -`cmake`: - -```bash -# Install Boost C++ for Ubuntu 16.04/18.04 -$ sudo apt-get install libboost-all-dev -``` - -or - -```bash -# Install Boost C++ for Conda -$ conda install -c conda-forge boost -``` - -Ensure that cuDF is installed. See https://github.com/rapidsai/cuml - - #### Build and Install the C/C++ CUDA components To install cuGraph from source, ensure the dependencies are met and follow the steps below: -1) Clone the repository and submodules +1) Clone the repository ```bash # Set the localtion to cuGraph in an environment variable CUGRAPH_HOME @@ -106,9 +88,7 @@ To install cuGraph from source, ensure the dependencies are met and follow the s # Download the cuGraph repo git clone https://github.com/rapidsai/cugraph.git $CUGRAPH_HOME - # Next load all the submodules cd $CUGRAPH_HOME - git submodule update --init --recursive --remote ``` 2) Create the conda development environment