diff --git a/CONTRIBUTING.md b/CONTRIBUTING.md index ac3bb3908e6..1fa69b6b59e 100644 --- a/CONTRIBUTING.md +++ b/CONTRIBUTING.md @@ -64,12 +64,12 @@ The following instructions are tested on Linux systems. Compiler requirement: * `gcc` version 5.4+ -* `nvcc` version 9.2 +* `nvcc` version 10.0+ * `cmake` version 3.12 CUDA requirement: -* CUDA 9.2+ +* CUDA 10.0+ * NVIDIA driver 396.44+ * Pascal architecture or better @@ -115,14 +115,15 @@ To install cuGraph from source, ensure the dependencies are met and follow the s ```bash # create the conda environment (assuming in base `cugraph` directory) -# for CUDA 9.2 -conda env create --name cugraph_dev --file conda/environments/cugraph_dev92.yml # for CUDA 10 -conda env create --name cugraph_dev --file conda/environments/cugraph_dev_cuda10.yml +conda env create --name cugraph_dev --file conda/environments/cugraph_dev_cuda10.0.yml # for CUDA 10.1 -conda env create --name cugraph_dev --file conda/environments/cugraph_dev_cuda101.yml +conda env create --name cugraph_dev --file conda/environments/cugraph_dev_cuda10.1.yml + +# for CUDA 10.2 +conda env create --name cugraph_dev --file conda/environments/cugraph_dev_cuda10.2.yml # activate the environment conda activate cugraph_dev @@ -135,14 +136,15 @@ conda deactivate ```bash -# for CUDA 9.2 -conda env update --name cugraph_dev --file conda/environments/cugraph_dev.yml # for CUDA 10 -conda env update --name cugraph_dev --file conda/environments/cugraph_dev_cuda10.yml +conda env update --name cugraph_dev --file conda/environments/cugraph_dev_cuda10.0.yml # for CUDA 10.1 -conda env update --name cugraph_dev --file conda/environments/cugraph_dev_cuda101.yml +conda env update --name cugraph_dev --file conda/environments/cugraph_dev_cuda10.1.yml + +# for CUDA 10.2 +conda env update --name cugraph_dev --file conda/environments/cugraph_dev_cuda10.2.yml conda activate cugraph_dev ``` @@ -273,8 +275,8 @@ Next the env_vars.sh file needs to be edited vi ./etc/conda/activate.d/env_vars.sh #!/bin/bash -export PATH=/usr/local/cuda-10.0/bin:$PATH # or cuda-9.2 if using CUDA 9.2 -export LD_LIBRARY_PATH=/usr/local/cuda-10.0/lib64:$LD_LIBRARY_PATH # or cuda-9.2 if using CUDA 9.2 +export PATH=/usr/local/cuda-10.0/bin:$PATH # or cuda-10.2 if using CUDA 10.2 +export LD_LIBRARY_PATH=/usr/local/cuda-10.0/lib64:$LD_LIBRARY_PATH # or cuda-10.2 if using CUDA 10.2 ``` ``` diff --git a/README.md b/README.md index 29540574fd6..753d5adec99 100644 --- a/README.md +++ b/README.md @@ -47,6 +47,7 @@ for i in range(len(gdf_page)): | Spectral Clustering - Balanced-Cut | Single-GPU | | | Spectral Clustering - Modularity Maximization | Single-GPU | | | Louvain | Single-GPU | | +| Ensemble Clustering for Graphs (ECG) | Single-GPU | | | Renumbering | Single-GPU | | | Basic Graph Statistics | Single-GPU | | | Weakly Connected Components | Single-GPU | | @@ -95,14 +96,15 @@ It is easy to install cuGraph using conda. You can get a minimal conda installat Install and update cuGraph using the conda command: ```bash -# CUDA 9.2 -conda install -c nvidia -c rapidsai -c numba -c conda-forge -c defaults cugraph cudatoolkit=9.2 # CUDA 10.0 conda install -c nvidia -c rapidsai -c numba -c conda-forge -c defaults cugraph cudatoolkit=10.0 # CUDA 10.1 conda install -c nvidia -c rapidsai -c numba -c conda-forge -c defaults cugraph cudatoolkit=10.1 + +# CUDA 10.2 +conda install -c nvidia -c rapidsai -c numba -c conda-forge -c defaults cugraph cudatoolkit=10.2 ``` Note: This conda installation only applies to Linux and Python versions 3.6/3.7.