From 4dc286e8e9572913f2437c7c2dc99eebbb758f86 Mon Sep 17 00:00:00 2001 From: Ralph Liu <106174412+oorliu@users.noreply.github.com> Date: Wed, 3 Aug 2022 13:30:07 -0400 Subject: [PATCH] Use Datasets API to Update Docstring Examples (#2441) closes #2361 Docstring examples now use the new method of creating graphs by using the `datasets` API. This change cleans up the code by eliminating the usage of `cuDF`. Old docstring example: ``` >>> M = cudf.read_csv(datasets_path / 'karate.csv', delimiter=' ', ... dtype=['int32', 'int32', 'float32'], header=None) >>> G = cugraph.Graph() >>> G.from_cudf_edgelist(M, source='0', destination='1') ``` Updated docstring example: ``` >>> from cugraph.experimental.datasets import karate >>> G = karate.get_graph() ``` Authors: - Ralph Liu (https://github.com/oorliu) - Dylan Chima-Sanchez (https://github.com/betochimas) Approvers: - Rick Ratzel (https://github.com/rlratzel) URL: https://github.com/rapidsai/cugraph/pull/2441 --- MANIFEST.in | 2 +- python/cugraph/MANIFEST.in | 2 +- .../centrality/betweenness_centrality.py | 14 +++---- .../cugraph/centrality/degree_centrality.py | 6 +-- .../centrality/eigenvector_centrality.py | 6 +-- .../cugraph/centrality/katz_centrality.py | 6 +-- python/cugraph/cugraph/community/ecg.py | 7 +--- python/cugraph/cugraph/community/egonet.py | 16 ++------ .../cugraph/community/ktruss_subgraph.py | 14 ++----- python/cugraph/cugraph/community/leiden.py | 8 +--- python/cugraph/cugraph/community/louvain.py | 8 +--- .../cugraph/community/spectral_clustering.py | 40 +++++-------------- .../cugraph/community/subgraph_extraction.py | 8 +--- .../cugraph/community/triangle_count.py | 8 +--- .../cugraph/components/connectivity.py | 24 +++-------- python/cugraph/cugraph/cores/core_number.py | 6 +-- python/cugraph/cugraph/cores/k_core.py | 6 +-- .../datasets/metadata/__init__.py | 0 python/cugraph/cugraph/layout/force_atlas2.py | 7 +--- python/cugraph/cugraph/link_analysis/hits.py | 6 +-- .../cugraph/cugraph/link_analysis/pagerank.py | 6 +-- .../cugraph/link_prediction/jaccard.py | 18 +++------ .../cugraph/link_prediction/overlap.py | 6 +-- .../cugraph/link_prediction/sorensen.py | 12 ++---- .../cugraph/link_prediction/wjaccard.py | 6 +-- .../cugraph/link_prediction/woverlap.py | 6 +-- .../cugraph/link_prediction/wsorensen.py | 6 +-- python/cugraph/cugraph/sampling/node2vec.py | 6 +-- .../cugraph/cugraph/sampling/random_walks.py | 7 ++-- python/cugraph/cugraph/traversal/bfs.py | 12 ++---- python/cugraph/cugraph/traversal/sssp.py | 6 +-- .../cugraph/tree/minimum_spanning_tree.py | 12 ++---- 32 files changed, 90 insertions(+), 207 deletions(-) create mode 100644 python/cugraph/cugraph/experimental/datasets/metadata/__init__.py diff --git a/MANIFEST.in b/MANIFEST.in index ea12b9342b3..8b68ff0f2fa 100644 --- a/MANIFEST.in +++ b/MANIFEST.in @@ -1,4 +1,4 @@ include python/versioneer.py include python/cugraph/_version.py include cugraph/experimental/datasets/*.yaml -include cugraph/experimental/datasets/metadata/*.yaml \ No newline at end of file +include cugraph/experimental/datasets/metadata/*.yaml diff --git a/python/cugraph/MANIFEST.in b/python/cugraph/MANIFEST.in index 1f6d9f7a4d0..ef71a68a090 100644 --- a/python/cugraph/MANIFEST.in +++ b/python/cugraph/MANIFEST.in @@ -1,4 +1,4 @@ include versioneer.py include cugraph/_version.py include cugraph/experimental/datasets/*.yaml -include cugraph/experimental/datasets/metadata/*.yaml \ No newline at end of file +include cugraph/experimental/datasets/metadata/*.yaml diff --git a/python/cugraph/cugraph/centrality/betweenness_centrality.py b/python/cugraph/cugraph/centrality/betweenness_centrality.py index e677c02f627..8f8cb3fce95 100644 --- a/python/cugraph/cugraph/centrality/betweenness_centrality.py +++ b/python/cugraph/cugraph/centrality/betweenness_centrality.py @@ -106,10 +106,8 @@ def betweenness_centrality( Examples -------- - >>> gdf = cudf.read_csv(datasets_path / 'karate.csv', delimiter=' ', - ... dtype=['int32', 'int32', 'float32'], header=None) - >>> G = cugraph.Graph() - >>> G.from_cudf_edgelist(gdf, source='0', destination='1') + >>> from cugraph.experimental.datasets import karate + >>> G = karate.get_graph(fetch=True) >>> bc = cugraph.betweenness_centrality(G) """ @@ -235,11 +233,9 @@ def edge_betweenness_centrality( Examples -------- - >>> gdf = cudf.read_csv(datasets_path / 'karate.csv', delimiter=' ', - ... dtype=['int32', 'int32', 'float32'], header=None) - >>> G = cugraph.Graph() - >>> G.from_cudf_edgelist(gdf, source='0', destination='1') - >>> ebc = cugraph.edge_betweenness_centrality(G) + >>> from cugraph.experimental.datasets import karate + >>> G = karate.get_graph(fetch=True) + >>> bc = cugraph.betweenness_centrality(G) """ if weight is not None: diff --git a/python/cugraph/cugraph/centrality/degree_centrality.py b/python/cugraph/cugraph/centrality/degree_centrality.py index c7ef6549598..a57808b0ccb 100644 --- a/python/cugraph/cugraph/centrality/degree_centrality.py +++ b/python/cugraph/cugraph/centrality/degree_centrality.py @@ -42,10 +42,8 @@ def degree_centrality(G, normalized=True): Examples -------- - >>> gdf = cudf.read_csv(datasets_path / 'karate.csv', delimiter=' ', - ... dtype=['int32', 'int32', 'float32'], header=None) - >>> G = cugraph.Graph() - >>> G.from_cudf_edgelist(gdf, source='0', destination='1') + >>> from cugraph.experimental.datasets import karate + >>> G = karate.get_graph(fetch=True) >>> dc = cugraph.degree_centrality(G) """ diff --git a/python/cugraph/cugraph/centrality/eigenvector_centrality.py b/python/cugraph/cugraph/centrality/eigenvector_centrality.py index 464c4b431cb..514cd84c69b 100644 --- a/python/cugraph/cugraph/centrality/eigenvector_centrality.py +++ b/python/cugraph/cugraph/centrality/eigenvector_centrality.py @@ -68,10 +68,8 @@ def eigenvector_centrality( Examples -------- - >>> gdf = cudf.read_csv(datasets_path / 'karate.csv', delimiter=' ', - ... dtype=['int32', 'int32', 'float32'], header=None) - >>> G = cugraph.Graph() - >>> G.from_cudf_edgelist(gdf, source='0', destination='1') + >>> from cugraph.experimental.datasets import karate + >>> G = karate.get_graph(fetch=True) >>> ec = cugraph.eigenvector_centrality(G) """ diff --git a/python/cugraph/cugraph/centrality/katz_centrality.py b/python/cugraph/cugraph/centrality/katz_centrality.py index 5aff9f2dd2f..569e53be5c0 100644 --- a/python/cugraph/cugraph/centrality/katz_centrality.py +++ b/python/cugraph/cugraph/centrality/katz_centrality.py @@ -107,10 +107,8 @@ def katz_centrality( Examples -------- - >>> gdf = cudf.read_csv(datasets_path / 'karate.csv', delimiter=' ', - ... dtype=['int32', 'int32', 'float32'], header=None) - >>> G = cugraph.Graph() - >>> G.from_cudf_edgelist(gdf, source='0', destination='1') + >>> from cugraph.experimental.datasets import karate + >>> G = karate.get_graph(fetch=True) >>> kc = cugraph.katz_centrality(G) """ diff --git a/python/cugraph/cugraph/community/ecg.py b/python/cugraph/cugraph/community/ecg.py index 7b5c8ced5fb..61ef7ce530d 100644 --- a/python/cugraph/cugraph/community/ecg.py +++ b/python/cugraph/cugraph/community/ecg.py @@ -61,11 +61,8 @@ def ecg(input_graph, min_weight=0.05, ensemble_size=16, weight=None): Examples -------- - >>> M = cudf.read_csv(datasets_path / 'karate.csv', delimiter = ' ', - ... dtype=['int32', 'int32', 'float32'], - ... header=None) - >>> G = cugraph.Graph() - >>> G.from_cudf_edgelist(M, source='0', destination='1', edge_attr='2') + >>> from cugraph.experimental.datasets import karate + >>> G = karate.get_graph(fetch=True) >>> parts = cugraph.ecg(G) """ diff --git a/python/cugraph/cugraph/community/egonet.py b/python/cugraph/cugraph/community/egonet.py index 8e9765100ab..e2f0493eb45 100644 --- a/python/cugraph/cugraph/community/egonet.py +++ b/python/cugraph/cugraph/community/egonet.py @@ -81,12 +81,8 @@ def ego_graph(G, n, radius=1, center=True, undirected=False, distance=None): Examples -------- - >>> M = cudf.read_csv(datasets_path / 'karate.csv', - ... delimiter = ' ', - ... dtype=['int32', 'int32', 'float32'], - ... header=None) - >>> G = cugraph.Graph() - >>> G.from_cudf_edgelist(M, source='0', destination='1') + >>> from cugraph.experimental.datasets import karate + >>> G = karate.get_graph(fetch=True) >>> ego_graph = cugraph.ego_graph(G, 1, radius=2) """ @@ -157,12 +153,8 @@ def batched_ego_graphs( Examples -------- - >>> M = cudf.read_csv(datasets_path / 'karate.csv', - ... delimiter = ' ', - ... dtype=['int32', 'int32', 'float32'], - ... header=None) - >>> G = cugraph.Graph() - >>> G.from_cudf_edgelist(M, source='0', destination='1') + >>> from cugraph.experimental.datasets import karate + >>> G = karate.get_graph(fetch=True) >>> b_ego_graph, offsets = cugraph.batched_ego_graphs(G, seeds=[1,5], ... radius=2) diff --git a/python/cugraph/cugraph/community/ktruss_subgraph.py b/python/cugraph/cugraph/community/ktruss_subgraph.py index c32c6ce177c..59b7c4e2ae6 100644 --- a/python/cugraph/cugraph/community/ktruss_subgraph.py +++ b/python/cugraph/cugraph/community/ktruss_subgraph.py @@ -67,11 +67,8 @@ def k_truss(G, k): Examples -------- - >>> import cudf # k_truss does not run on CUDA 11.5 - >>> gdf = cudf.read_csv(datasets_path / 'karate.csv', delimiter=' ', - ... dtype=['int32', 'int32', 'float32'], header=None) - >>> G = cugraph.Graph() - >>> G.from_cudf_edgelist(gdf, source='0', destination='1') + >>> from cugraph.experimental.datasets import karate + >>> G = karate.get_graph(fetch=True) >>> k_subgraph = cugraph.k_truss(G, 3) """ @@ -150,11 +147,8 @@ def ktruss_subgraph(G, k, use_weights=True): Examples -------- - >>> import cudf # ktruss_subgraph does not run on CUDA 11.5 - >>> gdf = cudf.read_csv(datasets_path / 'karate.csv', delimiter=' ', - ... dtype=['int32', 'int32', 'float32'], header=None) - >>> G = cugraph.Graph() - >>> G.from_cudf_edgelist(gdf, source='0', destination='1') + >>> from cugraph.experimental.datasets import karate + >>> G = karate.get_graph(fetch=True) >>> k_subgraph = cugraph.ktruss_subgraph(G, 3) """ diff --git a/python/cugraph/cugraph/community/leiden.py b/python/cugraph/cugraph/community/leiden.py index d10d5700b1a..ae282cda7ed 100644 --- a/python/cugraph/cugraph/community/leiden.py +++ b/python/cugraph/cugraph/community/leiden.py @@ -66,12 +66,8 @@ def leiden(G, max_iter=100, resolution=1.): Examples -------- - >>> M = cudf.read_csv(datasets_path / 'karate.csv', - ... delimiter = ' ', - ... dtype=['int32', 'int32', 'float32'], - ... header=None) - >>> G = cugraph.Graph() - >>> G.from_cudf_edgelist(M, source='0', destination='1') + >>> from cugraph.experimental.datasets import karate + >>> G = karate.get_graph(fetch=True) >>> parts, modularity_score = cugraph.leiden(G) """ diff --git a/python/cugraph/cugraph/community/louvain.py b/python/cugraph/cugraph/community/louvain.py index 87591f61cbc..cf0e3cc6ac5 100644 --- a/python/cugraph/cugraph/community/louvain.py +++ b/python/cugraph/cugraph/community/louvain.py @@ -65,12 +65,8 @@ def louvain(G, max_iter=100, resolution=1.): Examples -------- - >>> M = cudf.read_csv(datasets_path / 'karate.csv', - ... delimiter = ' ', - ... dtype=['int32', 'int32', 'float32'], - ... header=None) - >>> G = cugraph.Graph() - >>> G.from_cudf_edgelist(M, source='0', destination='1') + >>> from cugraph.experimental.datasets import karate + >>> G = karate.get_graph(fetch=True) >>> parts, modularity_score = cugraph.louvain(G) """ diff --git a/python/cugraph/cugraph/community/spectral_clustering.py b/python/cugraph/cugraph/community/spectral_clustering.py index 9415d545d6f..9796d07b4b8 100644 --- a/python/cugraph/cugraph/community/spectral_clustering.py +++ b/python/cugraph/cugraph/community/spectral_clustering.py @@ -71,12 +71,8 @@ def spectralBalancedCutClustering( Examples -------- - >>> M = cudf.read_csv(datasets_path / 'karate.csv', - ... delimiter = ' ', - ... dtype=['int32', 'int32', 'float32'], - ... header=None) - >>> G = cugraph.Graph() - >>> G.from_cudf_edgelist(M, source='0', destination='1') + >>> from cugraph.experimental.datasets import karate + >>> G = karate.get_graph(fetch=True) >>> df = cugraph.spectralBalancedCutClustering(G, 5) """ @@ -158,12 +154,8 @@ def spectralModularityMaximizationClustering( Examples -------- - >>> M = cudf.read_csv(datasets_path / 'karate.csv', - ... delimiter = ' ', - ... dtype=['int32', 'int32', 'float32'], - ... header=None) - >>> G = cugraph.Graph() - >>> G.from_cudf_edgelist(M, source='0', destination='1', edge_attr='2') + >>> from cugraph.experimental.datasets import karate + >>> G = karate.get_graph(fetch=True) >>> df = cugraph.spectralModularityMaximizationClustering(G, 5) """ @@ -226,12 +218,8 @@ def analyzeClustering_modularity(G, n_clusters, clustering, Examples -------- - >>> M = cudf.read_csv(datasets_path / 'karate.csv', - ... delimiter = ' ', - ... dtype=['int32', 'int32', 'float32'], - ... header=None) - >>> G = cugraph.Graph() - >>> G.from_cudf_edgelist(M, source='0', destination='1', edge_attr='2') + >>> from cugraph.experimental.datasets import karate + >>> G = karate.get_graph(fetch=True) >>> df = cugraph.spectralBalancedCutClustering(G, 5) >>> score = cugraph.analyzeClustering_modularity(G, 5, df) @@ -297,12 +285,8 @@ def analyzeClustering_edge_cut(G, n_clusters, clustering, Examples -------- - >>> M = cudf.read_csv(datasets_path / 'karate.csv', - ... delimiter = ' ', - ... dtype=['int32', 'int32', 'float32'], - ... header=None) - >>> G = cugraph.Graph() - >>> G.from_cudf_edgelist(M, source='0', destination='1', edge_attr=None) + >>> from cugraph.experimental.datasets import karate + >>> G = karate.get_graph(fetch=True) >>> df = cugraph.spectralBalancedCutClustering(G, 5) >>> score = cugraph.analyzeClustering_edge_cut(G, 5, df) @@ -365,12 +349,8 @@ def analyzeClustering_ratio_cut(G, n_clusters, clustering, Examples -------- - >>> M = cudf.read_csv(datasets_path / 'karate.csv', - ... delimiter = ' ', - ... dtype=['int32', 'int32', 'float32'], - ... header=None) - >>> G = cugraph.Graph() - >>> G.from_cudf_edgelist(M, source='0', destination='1', edge_attr='2') + >>> from cugraph.experimental.datasets import karate + >>> G = karate.get_graph(fetch=True) >>> df = cugraph.spectralBalancedCutClustering(G, 5) >>> score = cugraph.analyzeClustering_ratio_cut(G, 5, df, 'vertex', ... 'cluster') diff --git a/python/cugraph/cugraph/community/subgraph_extraction.py b/python/cugraph/cugraph/community/subgraph_extraction.py index bc11dbd1294..206f38266b9 100644 --- a/python/cugraph/cugraph/community/subgraph_extraction.py +++ b/python/cugraph/cugraph/community/subgraph_extraction.py @@ -43,12 +43,8 @@ def subgraph(G, vertices): Examples -------- - >>> gdf = cudf.read_csv(datasets_path / 'karate.csv', - ... delimiter = ' ', - ... dtype=['int32', 'int32', 'float32'], - ... header=None) - >>> G = cugraph.Graph() - >>> G.from_cudf_edgelist(gdf, source='0', destination='1') + >>> from cugraph.experimental.datasets import karate + >>> G = karate.get_graph(fetch=True) >>> verts = np.zeros(3, dtype=np.int32) >>> verts[0] = 0 >>> verts[1] = 1 diff --git a/python/cugraph/cugraph/community/triangle_count.py b/python/cugraph/cugraph/community/triangle_count.py index 103999e7010..ce8539c1541 100644 --- a/python/cugraph/cugraph/community/triangle_count.py +++ b/python/cugraph/cugraph/community/triangle_count.py @@ -39,12 +39,8 @@ def triangles(G): Examples -------- - >>> gdf = cudf.read_csv(datasets_path / 'karate.csv', - ... delimiter = ' ', - ... dtype=['int32', 'int32', 'float32'], - ... header=None) - >>> G = cugraph.Graph() - >>> G.from_cudf_edgelist(gdf, source='0', destination='1') + >>> from cugraph.experimental.datasets import karate + >>> G = karate.get_graph(fetch=True) >>> count = cugraph.triangles(G) """ diff --git a/python/cugraph/cugraph/components/connectivity.py b/python/cugraph/cugraph/components/connectivity.py index c1601cd42bf..1ac78bc1e83 100644 --- a/python/cugraph/cugraph/components/connectivity.py +++ b/python/cugraph/cugraph/components/connectivity.py @@ -171,12 +171,8 @@ def weakly_connected_components(G, Examples -------- - >>> M = cudf.read_csv(datasets_path / 'karate.csv', - ... delimiter = ' ', - ... dtype=['int32', 'int32', 'float32'], - ... header=None) - >>> G = cugraph.Graph() - >>> G.from_cudf_edgelist(M, source='0', destination='1', edge_attr=None) + >>> from cugraph.experimental.datasets import karate + >>> G = karate.get_graph(fetch=True) >>> df = cugraph.weakly_connected_components(G) """ @@ -269,12 +265,8 @@ def strongly_connected_components(G, Examples -------- - >>> M = cudf.read_csv(datasets_path / 'karate.csv', - ... delimiter = ' ', - ... dtype=['int32', 'int32', 'float32'], - ... header=None) - >>> G = cugraph.Graph() - >>> G.from_cudf_edgelist(M, source='0', destination='1', edge_attr=None) + >>> from cugraph.experimental.datasets import karate + >>> G = karate.get_graph(fetch=True) >>> df = cugraph.strongly_connected_components(G) """ @@ -367,12 +359,8 @@ def connected_components(G, Examples -------- - >>> M = cudf.read_csv(datasets_path / 'karate.csv', - ... delimiter = ' ', - ... dtype=['int32', 'int32', 'float32'], - ... header=None) - >>> G = cugraph.Graph() - >>> G.from_cudf_edgelist(M, source='0', destination='1', edge_attr=None) + >>> from cugraph.experimental.datasets import karate + >>> G = karate.get_graph(fetch=True) >>> df = cugraph.connected_components(G, connection="weak") """ diff --git a/python/cugraph/cugraph/cores/core_number.py b/python/cugraph/cugraph/cores/core_number.py index f5a1e00de9f..028c4f05b31 100644 --- a/python/cugraph/cugraph/cores/core_number.py +++ b/python/cugraph/cugraph/cores/core_number.py @@ -58,10 +58,8 @@ def core_number(G, degree_type=None): Examples -------- - >>> gdf = cudf.read_csv(datasets_path / 'karate.csv', delimiter=' ', - ... dtype=['int32', 'int32', 'float32'], header=None) - >>> G = cugraph.Graph() - >>> G.from_cudf_edgelist(gdf, source='0', destination='1') + >>> from cugraph.experimental.datasets import karate + >>> G = karate.get_graph(fetch=True) >>> df = cugraph.core_number(G) """ diff --git a/python/cugraph/cugraph/cores/k_core.py b/python/cugraph/cugraph/cores/k_core.py index 7e935c55558..d17076d0f50 100644 --- a/python/cugraph/cugraph/cores/k_core.py +++ b/python/cugraph/cugraph/cores/k_core.py @@ -74,10 +74,8 @@ def k_core(G, k=None, core_number=None): Examples -------- - >>> gdf = cudf.read_csv(datasets_path / 'karate.csv', delimiter=' ', - ... dtype=['int32', 'int32', 'float32'], header=None) - >>> G = cugraph.Graph() - >>> G.from_cudf_edgelist(gdf, source='0', destination='1') + >>> from cugraph.experimental.datasets import karate + >>> G = karate.get_graph(fetch=True) >>> KCoreGraph = cugraph.k_core(G) """ diff --git a/python/cugraph/cugraph/experimental/datasets/metadata/__init__.py b/python/cugraph/cugraph/experimental/datasets/metadata/__init__.py new file mode 100644 index 00000000000..e69de29bb2d diff --git a/python/cugraph/cugraph/layout/force_atlas2.py b/python/cugraph/cugraph/layout/force_atlas2.py index ec05a3b8482..366a3009678 100644 --- a/python/cugraph/cugraph/layout/force_atlas2.py +++ b/python/cugraph/cugraph/layout/force_atlas2.py @@ -123,11 +123,8 @@ def on_train_end(self, positions): Examples -------- - >>> gdf = cudf.read_csv(datasets_path / 'karate.csv', delimiter=' ', - ... dtype=['int32', 'int32', 'float32'], - ... header=None) - >>> G = cugraph.Graph() - >>> G.from_cudf_edgelist(gdf, source='0', destination='1') + >>> from cugraph.experimental.datasets import karate + >>> G = karate.get_graph(fetch=True) >>> pos = cugraph.force_atlas2(G) """ diff --git a/python/cugraph/cugraph/link_analysis/hits.py b/python/cugraph/cugraph/link_analysis/hits.py index 820f7d6aba1..544e64aef08 100644 --- a/python/cugraph/cugraph/link_analysis/hits.py +++ b/python/cugraph/cugraph/link_analysis/hits.py @@ -79,10 +79,8 @@ def hits( Examples -------- - >>> gdf = cudf.read_csv(datasets_path / 'karate.csv', delimiter=' ', - ... dtype=['int32', 'int32', 'float32'], header=None) - >>> G = cugraph.Graph() - >>> G.from_cudf_edgelist(gdf, source='0', destination='1') + >>> from cugraph.experimental.datasets import karate + >>> G = karate.get_graph(fetch=True) >>> hits = cugraph.hits(G, max_iter = 50) """ diff --git a/python/cugraph/cugraph/link_analysis/pagerank.py b/python/cugraph/cugraph/link_analysis/pagerank.py index 1bf238141fc..ecb0ba6ea74 100644 --- a/python/cugraph/cugraph/link_analysis/pagerank.py +++ b/python/cugraph/cugraph/link_analysis/pagerank.py @@ -98,10 +98,8 @@ def pagerank( Examples -------- - >>> gdf = cudf.read_csv(datasets_path / 'karate.csv', delimiter=' ', - ... dtype=['int32', 'int32', 'float32'], header=None) - >>> G = cugraph.Graph() - >>> G.from_cudf_edgelist(gdf, source='0', destination='1') + >>> from cugraph.experimental.datasets import karate + >>> G = karate.get_graph(fetch=True) >>> pr = cugraph.pagerank(G, alpha = 0.85, max_iter = 500, tol = 1.0e-05) """ diff --git a/python/cugraph/cugraph/link_prediction/jaccard.py b/python/cugraph/cugraph/link_prediction/jaccard.py index 10bfd35f252..1e7ddc2ec43 100644 --- a/python/cugraph/cugraph/link_prediction/jaccard.py +++ b/python/cugraph/cugraph/link_prediction/jaccard.py @@ -53,10 +53,8 @@ def jaccard(input_graph, vertex_pair=None): you can get the interesting (non-zero) values that are part of the networkx solution by doing the following: - >>> gdf = cudf.read_csv(datasets_path / 'karate.csv', delimiter=' ', - ... dtype=['int32', 'int32', 'float32'], header=None) - >>> G = cugraph.Graph() - >>> G.from_cudf_edgelist(gdf, source='0', destination='1') + >>> from cugraph.experimental.datasets import karate + >>> G = karate.get_graph(fetch=True) >>> pairs = G.get_two_hop_neighbors() >>> df = cugraph.jaccard(G, pairs) @@ -100,10 +98,8 @@ def jaccard(input_graph, vertex_pair=None): Examples -------- - >>> gdf = cudf.read_csv(datasets_path / 'karate.csv', delimiter=' ', - ... dtype=['int32', 'int32', 'float32'], header=None) - >>> G = cugraph.Graph() - >>> G.from_cudf_edgelist(gdf, source='0', destination='1') + >>> from cugraph.experimental.datasets import karate + >>> G = karate.get_graph(fetch=True) >>> df = cugraph.jaccard(G) """ @@ -162,10 +158,8 @@ def jaccard_coefficient(G, ebunch=None): Examples -------- - >>> gdf = cudf.read_csv(datasets_path / 'karate.csv', delimiter=' ', - ... dtype=['int32', 'int32', 'float32'], header=None) - >>> G = cugraph.Graph() - >>> G.from_cudf_edgelist(gdf, source='0', destination='1') + >>> from cugraph.experimental.datasets import karate + >>> G = karate.get_graph(fetch=True) >>> df = cugraph.jaccard_coefficient(G) """ diff --git a/python/cugraph/cugraph/link_prediction/overlap.py b/python/cugraph/cugraph/link_prediction/overlap.py index 816c580747b..9318c379439 100644 --- a/python/cugraph/cugraph/link_prediction/overlap.py +++ b/python/cugraph/cugraph/link_prediction/overlap.py @@ -85,10 +85,8 @@ def overlap(input_graph, vertex_pair=None): Examples -------- - >>> gdf = cudf.read_csv(datasets_path / 'karate.csv', delimiter=' ', - ... dtype=['int32', 'int32', 'float32'], header=None) - >>> G = cugraph.Graph() - >>> G.from_cudf_edgelist(gdf, source='0', destination='1') + >>> from cugraph.experimental.datasets import karate + >>> G = karate.get_graph(fetch=True) >>> df = cugraph.overlap(G) """ diff --git a/python/cugraph/cugraph/link_prediction/sorensen.py b/python/cugraph/cugraph/link_prediction/sorensen.py index 4a88f6b1558..4a4bc8adcdb 100644 --- a/python/cugraph/cugraph/link_prediction/sorensen.py +++ b/python/cugraph/cugraph/link_prediction/sorensen.py @@ -68,10 +68,8 @@ def sorensen(input_graph, vertex_pair=None): Examples -------- - >>> gdf = cudf.read_csv(datasets_path / 'karate.csv', delimiter=' ', - ... dtype=['int32', 'int32', 'float32'], header=None) - >>> G = cugraph.Graph() - >>> G.from_cudf_edgelist(gdf, source='0', destination='1') + >>> from cugraph.experimental.datasets import karate + >>> G = karate.get_graph(fetch=True) >>> df = cugraph.sorensen(G) """ @@ -132,10 +130,8 @@ def sorensen_coefficient(G, ebunch=None): Examples -------- - >>> gdf = cudf.read_csv(datasets_path / 'karate.csv', delimiter=' ', - ... dtype=['int32', 'int32', 'float32'], header=None) - >>> G = cugraph.Graph() - >>> G.from_cudf_edgelist(gdf, source='0', destination='1') + >>> from cugraph.experimental.datasets import karate + >>> G = karate.get_graph(fetch=True) >>> df = cugraph.sorensen_coefficient(G) """ diff --git a/python/cugraph/cugraph/link_prediction/wjaccard.py b/python/cugraph/cugraph/link_prediction/wjaccard.py index 3ff00df11ec..68c093a052a 100644 --- a/python/cugraph/cugraph/link_prediction/wjaccard.py +++ b/python/cugraph/cugraph/link_prediction/wjaccard.py @@ -70,10 +70,8 @@ def jaccard_w(input_graph, weights, vertex_pair=None): Examples -------- >>> import random - >>> M = cudf.read_csv(datasets_path / 'karate.csv', delimiter=' ', - ... dtype=['int32', 'int32', 'float32'], header=None) - >>> G = cugraph.Graph() - >>> G.from_cudf_edgelist(M, source='0', destination='1') + >>> from cugraph.experimental.datasets import karate + >>> G = karate.get_graph(fetch=True) >>> # Create a dataframe containing the vertices with their >>> # corresponding weight >>> weights = cudf.DataFrame() diff --git a/python/cugraph/cugraph/link_prediction/woverlap.py b/python/cugraph/cugraph/link_prediction/woverlap.py index 10eca82e951..42509962b2a 100644 --- a/python/cugraph/cugraph/link_prediction/woverlap.py +++ b/python/cugraph/cugraph/link_prediction/woverlap.py @@ -69,10 +69,8 @@ def overlap_w(input_graph, weights, vertex_pair=None): Examples -------- >>> import random - >>> M = cudf.read_csv(datasets_path / 'karate.csv', delimiter=' ', - ... dtype=['int32', 'int32', 'float32'], header=None) - >>> G = cugraph.Graph() - >>> G.from_cudf_edgelist(M, source='0', destination='1') + >>> from cugraph.experimental.datasets import karate + >>> G = karate.get_graph(fetch=True) >>> # Create a dataframe containing the vertices with their >>> # corresponding weight >>> weights = cudf.DataFrame() diff --git a/python/cugraph/cugraph/link_prediction/wsorensen.py b/python/cugraph/cugraph/link_prediction/wsorensen.py index 69eb5b975c7..cacc4242257 100644 --- a/python/cugraph/cugraph/link_prediction/wsorensen.py +++ b/python/cugraph/cugraph/link_prediction/wsorensen.py @@ -65,10 +65,8 @@ def sorensen_w(input_graph, weights, vertex_pair=None): Examples -------- >>> import random - >>> M = cudf.read_csv(datasets_path / 'karate.csv', delimiter=' ', - ... dtype=['int32', 'int32', 'float32'], header=None) - >>> G = cugraph.Graph() - >>> G.from_cudf_edgelist(M, source='0', destination='1') + >>> from cugraph.experimental.datasets import karate + >>> G = karate.get_graph(fetch=True) >>> # Create a dataframe containing the vertices with their >>> # corresponding weight >>> weights = cudf.DataFrame() diff --git a/python/cugraph/cugraph/sampling/node2vec.py b/python/cugraph/cugraph/sampling/node2vec.py index 44af8e1182a..b0b2029153d 100644 --- a/python/cugraph/cugraph/sampling/node2vec.py +++ b/python/cugraph/cugraph/sampling/node2vec.py @@ -87,10 +87,8 @@ def node2vec(G, Examples -------- - >>> M = cudf.read_csv(datasets_path / 'karate.csv', delimiter=' ', - ... dtype=['int32', 'int32', 'float32'], header=None) - >>> G = cugraph.Graph() - >>> G.from_cudf_edgelist(M, source='0', destination='1', edge_attr='2') + >>> from cugraph.experimental.datasets import karate + >>> G = karate.get_graph(fetch=True) >>> start_vertices = cudf.Series([0, 2], dtype=np.int32) >>> paths, weights, path_sizes = cugraph.node2vec(G, start_vertices, 3, ... True, 0.8, 0.5) diff --git a/python/cugraph/cugraph/sampling/random_walks.py b/python/cugraph/cugraph/sampling/random_walks.py index d7ce6057049..f3c0a7c965a 100644 --- a/python/cugraph/cugraph/sampling/random_walks.py +++ b/python/cugraph/cugraph/sampling/random_walks.py @@ -56,10 +56,9 @@ def random_walks(G, Examples -------- - >>> M = cudf.read_csv(datasets_path / 'karate.csv', delimiter=' ', - ... dtype=['int32', 'int32', 'float32'], header=None) - >>> G = cugraph.Graph() - >>> G.from_cudf_edgelist(M, source='0', destination='1', edge_attr='2') + >>> from cugraph.experimental.datasets import karate + >>> M = karate.get_edgelist(fetch=True) + >>> G = karate.get_graph() >>> _, _, _ = cugraph.random_walks(G, M, 3) """ diff --git a/python/cugraph/cugraph/traversal/bfs.py b/python/cugraph/cugraph/traversal/bfs.py index 4938b6bb200..64d6dddb403 100644 --- a/python/cugraph/cugraph/traversal/bfs.py +++ b/python/cugraph/cugraph/traversal/bfs.py @@ -206,10 +206,8 @@ def bfs(G, Examples -------- - >>> M = cudf.read_csv(datasets_path / 'karate.csv', delimiter=' ', - ... dtype=['int32', 'int32', 'float32'], header=None) - >>> G = cugraph.Graph() - >>> G.from_cudf_edgelist(M, source='0', destination='1') + >>> from cugraph.experimental.datasets import karate + >>> G = karate.get_graph(fetch=True) >>> df = cugraph.bfs(G, 0) """ @@ -325,10 +323,8 @@ def bfs_edges(G, source, reverse=False, depth_limit=None, sort_neighbors=None): Examples -------- - >>> M = cudf.read_csv(datasets_path / 'karate.csv', delimiter=' ', - ... dtype=['int32', 'int32', 'float32'], header=None) - >>> G = cugraph.Graph() - >>> G.from_cudf_edgelist(M, source='0', destination='1') + >>> from cugraph.experimental.datasets import karate + >>> G = karate.get_graph(fetch=True) >>> df = cugraph.bfs_edges(G, 0) """ diff --git a/python/cugraph/cugraph/traversal/sssp.py b/python/cugraph/cugraph/traversal/sssp.py index 4533a834952..1428672559d 100644 --- a/python/cugraph/cugraph/traversal/sssp.py +++ b/python/cugraph/cugraph/traversal/sssp.py @@ -238,10 +238,8 @@ def sssp(G, Examples -------- - >>> M = cudf.read_csv(datasets_path / 'karate.csv', delimiter=' ', - ... dtype=['int32', 'int32', 'float32'], header=None) - >>> G = cugraph.Graph() - >>> G.from_cudf_edgelist(M, source='0', destination='1') + >>> from cugraph.experimental.datasets import karate + >>> G = karate.get_graph(fetch=True) >>> distances = cugraph.sssp(G, 0) >>> distances distance vertex predecessor diff --git a/python/cugraph/cugraph/tree/minimum_spanning_tree.py b/python/cugraph/cugraph/tree/minimum_spanning_tree.py index 8ad1af0f704..fe19e8ed1ff 100644 --- a/python/cugraph/cugraph/tree/minimum_spanning_tree.py +++ b/python/cugraph/cugraph/tree/minimum_spanning_tree.py @@ -92,10 +92,8 @@ def minimum_spanning_tree( Examples -------- - >>> M = cudf.read_csv(datasets_path / 'netscience.csv', delimiter=' ', - ... dtype=['int32', 'int32', 'float32'], header=None) - >>> G = cugraph.Graph() - >>> G.from_cudf_edgelist(M, source='0', destination='1') + >>> from cugraph.experimental.datasets import netscience + >>> G = netscience.get_graph(fetch=True) >>> G_mst = cugraph.minimum_spanning_tree(G) """ @@ -139,10 +137,8 @@ def maximum_spanning_tree( Examples -------- - >>> M = cudf.read_csv(datasets_path / 'netscience.csv', delimiter=' ', - ... dtype=['int32', 'int32', 'float32'], header=None) - >>> G = cugraph.Graph() - >>> G.from_cudf_edgelist(M, source='0', destination='1') + >>> from cugraph.experimental.datasets import netscience + >>> G = netscience.get_graph(fetch=True) >>> G_mst = cugraph.maximum_spanning_tree(G) """