
ONNX To Torch Conversion



High Level View



Motivation

● Unifies efforts between both projects on lowerings to MHLO and TOSA

● Updating to StableHLO only needs to happen in one place

● Gives ONNX-MLIR access to direct lowerings to Linalg

● Nod.ai has multiple customers who use Torch-MLIR that are interested in unified ONNX support



Torch-MLIR Backend Contract

1. All tensors have value semantics
○ Builtin tensors have this for free

2. All tensors have known rank (and ideally as much static shape information as possible)
○ ONNX-MLIR shape inference

○ Torch-MLIR shape inference can optionally be run as well

3. All tensors have known dtype

4. Certain ops require decomposition (e.g. aten._log_softmax)
○ The decompositions in Torch-MLIR are reusable



Passes

1. “convert-onnx-to-torch”

2. “convert-function-types-to-torch-types”

3. “finalize-torch-type-conversion”

4. “erase-onnx-entry-point”



Passes

1. “convert-onnx-to-torch”
2. “convert-function-types-to-torch-types”

3. “finalize-torch-type-conversion”

4. “erase-onnx-entry-point”



Passes

1. “convert-onnx-to-torch”

2. “convert-function-types-to-torch-types”
3. “finalize-torch-type-conversion”

4. “erase-onnx-entry-point”



Passes

1. “convert-onnx-to-torch”

2. “convert-function-types-to-torch-types”

3. “finalize-torch-type-conversion”
4. “erase-onnx-entry-point”



Passes

1. “convert-onnx-to-torch”

2. “convert-function-types-to-torch-types”

3. “finalize-torch-type-conversion”

4. “erase-onnx-entry-point”



High Level View


