Skip to content

Latest commit

 

History

History
80 lines (70 loc) · 2.79 KB

README.md

File metadata and controls

80 lines (70 loc) · 2.79 KB

Online statistics in Rust 🦀

watermill is crate 🦀 for Blazingly fast, generic and serializable online statistics.

Quickstart


Let's compute the online median and then serialize it:

use watermill::quantile::Quantile;
use watermill::stats::Univariate;
let data: Vec<f64> = vec![9., 7., 3., 2., 6., 1., 8., 5., 4.];
let mut running_median: Quantile<f64> = Quantile::new(0.5_f64).unwrap();
for x in data.into_iter() {
    running_median.update(x); // update the current statistics
    println!("The actual median value is: {}", running_median.get());
}
assert_eq!(running_median.get(), 5.0);

// Convert the statistic to a JSON string.
let serialized = serde_json::to_string(&running_median).unwrap();

// Convert the JSON string back to a statistic.
let deserialized: Quantile<f64> = serde_json::from_str(&serialized).unwrap();

Now let's compute the online sum using the iterators:

use watermill::iter::IterStatisticsExtend;
let data: Vec<f64> = vec![1., 2., 3.];
let vec_true: Vec<f64> = vec![1., 3., 6.];
for (d, t) in data.into_iter().online_sum().zip(vec_true.into_iter()) {
    assert_eq!(d, t); //       ^^^^^^^^^^
}

You can also compute rolling statistics; in the following example let's compute the rolling sum on 2 previous data:

use watermill::rolling::Rolling;
use watermill::stats::Univariate;
use watermill::variance::Variance;
let data: Vec<f64> = vec![9., 7., 3., 2., 6., 1., 8., 5., 4.];
let mut running_var: Variance<f64> = Variance::default();
// We wrap `running_var` inside the `Rolling` struct.
let mut rolling_var: Rolling<f64> = Rolling::new(&mut running_var, 2).unwrap();
for x in data.into_iter() {
    rolling_var.update(x);
}
assert_eq!(rolling_var.get(), 0.5);

Installation


Add the following line to your cargo.toml:

[dependencies]
watermill = "0.1.0"

Statistics available

Statistics Rollable ?
Mean
Variance
Sum
Min
Max
Count
Quantile
Peak to peak
Exponentially weighted mean
Exponentially weighted variance
Interquartile range
Kurtosis
Skewness
Covariance

Inspiration


The stats module of the river library in Python greatly inspired this crate.