-
Notifications
You must be signed in to change notification settings - Fork 3
/
Copy pathbrain_geometry.py
98 lines (77 loc) · 2.93 KB
/
brain_geometry.py
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
import trimesh
import open3d as o3d
import polyscope as ps
import gpytoolbox as gpy
import numpy as np
import matplotlib.pyplot as plt
# load mesh
brain_mesh = trimesh.load('/Users/nicolas/Desktop/10brainsurfaces/100206/surf/lh_aligned.stl')
# extract vertices (V) and faces (F)
vertices = brain_mesh.vertices
faces = brain_mesh.faces
# convert the vertices and faces to the format expected by open3d
mesh = o3d.geometry.TriangleMesh()
mesh.vertices = o3d.utility.Vector3dVector(vertices)
mesh.triangles = o3d.utility.Vector3iVector(faces)
# compute vertex normals
mesh.compute_vertex_normals()
# visualize the mesh
o3d.visualization.draw_geometries([mesh])
# visualize the mesh with borders
o3d.visualization.draw_geometries(
[mesh],
window_name='Mesh with Normals',
width=1800,
height=1600,
left=50,
top=50,
mesh_show_wireframe=True, # show wireframe
mesh_show_back_face=True
)
# convert the mesh to a point cloud
point_cloud = mesh.sample_points_uniformly(number_of_points=10000)
# point cloud
o3d.visualization.draw_geometries([point_cloud])
# normals
N = gpy.per_face_normals(vertices, faces)
# register the mesh in Polyscope
ps.init()
mesh = ps.register_surface_mesh("brain", vertices, faces)
mesh.add_vector_quantity("per-face normals", N, defined_on="faces", enabled=True)
ps.show()
# compute per-face curvature using gpytoolbox (angle defect)
curvature = gpy.angle_defect(vertices, faces)
# debugging
print("Raw Curvature Values:")
print(curvature)
print("Curvature min:", np.min(curvature))
print("Curvature max:", np.max(curvature))
# percentile-based normalization
lower_percentile = np.percentile(curvature, 1)
upper_percentile = np.percentile(curvature, 99)
# clipping the curvature values to the 1st and 99th percentiles, to diminish the effect of outliers
curvature_clipped = np.clip(curvature, lower_percentile, upper_percentile)
# normalize the clipped curvature values between 0 and 1
curvature_normalized = (curvature_clipped - lower_percentile) / (upper_percentile - lower_percentile)
# debugging
print("Normalized Curvature Values:")
print(curvature_normalized)
# select color map
color_map = plt.get_cmap('viridis')
curvature_colors = color_map(curvature_normalized)[:, :3] # ignore alpha channel
# create Open3D mesh
mesh = o3d.geometry.TriangleMesh()
mesh.vertices = o3d.utility.Vector3dVector(vertices)
mesh.triangles = o3d.utility.Vector3iVector(faces)
mesh.vertex_colors = o3d.utility.Vector3dVector(curvature_colors) # apply colors to vertices
# compute normals to improve lighting in visualization
mesh.compute_vertex_normals()
# visualize the mesh with curvature coloring
o3d.visualization.draw_geometries([mesh], window_name='Mesh with Curvature Colors')
# visualize the normalized curvature values as a histogram
plt.figure()
plt.hist(curvature_normalized, bins=50, color='blue', alpha=0.7)
plt.title("Histogram of Normalized Curvature Values")
plt.xlabel("Normalized Curvature")
plt.ylabel("Frequency")
plt.show()