ASSESSING SCALABILITY AND
PERFORMANCE ISOLATION
OF LIGHTWEIGHT VIRTUALIZATION
SYSTEMS

A REPORT SUBMITTED TO THE UNIVERSITY OF MANCHESTER
FOR THE DEGREE OF BACHELOR OF SCIENCE
IN THE FACULTY OF SCIENCE AND ENGINEERING

Andrej Velichkovski (Student id: 10835521)
Supervisor: Dr. Pierre Olivier

Department of Computer Science

2023

Contents

[Declaration|

|Acknowledgements|

1 Intr

10N

1.1

Motivation|. .

2 Background

2.1

1rtualization|

B

10
10
11

12
12
13
15
16
16

4 Assessing Scalabiliy Methodology & Results| 23
4.1 Benchmark Design Overview|. 23
4.2 Microbenchmarks| 24

4.2.1 BootTime Analysis| 24
4.2.2 Memory Usage Analysis| 27
4.3 Network Intensive Applications| 29
4.3. Nenx| e 29
B32 Redis - - v v 31
4.4 Storage Intensive Applications| Lo oL 33

15 Performance Isolation Methodology & Results| 35
5.1 Benchmark Overviewl o 35
[5.2 CPU and Memory Intensive Attackers| 37

................................... 37
B22 Redisl . . o oo 38
(S 39

[5.3 File System Attackers|. 40

(6 Conclusions, Limitations and Future Works| 45
61 Conclusionsl 45
[6.2 Challenges and Limitations| 46
6.3 Future Worksl 47

Bibliography 48

A Benchmark appendix| 53
[A.1 Expertment Code Names| 53
(A2 Issuesidentified in Unikraftl. L oL 54

IA.2.1 Redis on Unikraft uses 100% of the CPU availablel 54
[A.2.2 Unikraft Redis stops processing requests (crashes) on increased load|. . 54
[A.2.3 Unikraft redis doesn’t start with kraft run, works correctly when started |

withQemu| 54
[A.2.4 Nginx stops processing requests on new version of UK| 54

Word Count: 10925

List of Figures

[2.1 ~ Schematic architecture of different hypervisors| 13
[2.2 Overview of a containerized system| 14
2.3 Docker system architecturef 15
[2.4 Unikernels running on different hypervisors| 17
[2.5 Overview of the Unikraft build process|. 18
[3.1 High-level architecture of the experiment runner CLI} 20
4.1 Combined boot time anlysis of Docker and Unikraft. 26
4.2 System resource availability in the boot time expertment| 26
4.3 Scalability memory usage analysis of Unikraft and Dockery 27
4.4 Combined wrk benchmark performance of Nginx on Docker and Unikraft) . . . 30
4.5 System resource availability in the Nginx scalability experiment| 31
4.6 Combined Redis benchmark performance on Docker and Unikraft) 32
4.7 System resource availability in the Redis scalability experiment|. 32
4.8 Combined SQLite benchmark performance on Docker and Unikraft) 34
4.9 System resource availability in the SQLite scalability experiment 34
[5.1 Performance Isolation Results of Nginx on Docker and Unikraft] 38
2 Performance Isolation Results of Redis on Docker and Unikraft|. 39
[5.3 Performance Isolation Results of SQLite on Docker and Unikraft| 39
[5.4 Performance Isolation Results of SQLite on Docker and Unikraft with different |
system call attacks| o 42

[5.5 Large Scale Performance Isolation Experiment of Docker and Unikraft). 44

Abstract

The popularity of cloud computing has been vastly increasing in the last couple of years. Cloud
environments rely on the concept of virtualization. Lightweight virtualization systems were
created to resolve the problems with traditional heavy virtual machines. They are known
to have better performance characteristics than traditional VMs. Two of the most popular
lightweight virtualization systems are containers and unikernels.

In this project, we explore the performance of Docker, one of the most popular container
engines, and Unikraft, a novel open-source unikernel development kit. We focus on assess-
ing the scalability and performance isolation of these two systems. In addition, we create a
benchmark framework to prototype and evaluate new experiments quickly.

In the first performance evaluation part, by incrementally launching many instances on
the same machine, we identified different scalability bottlenecks in both Docker and Unikraft,
which led to decreased performance. These bottlenecks include a linear increase in Docker
container boot time and a network bottleneck in the Unikraft libraries.

In the second performance evaluation part, we investigate the effect of different misbe-
having virtualization instances on other well-behaved user applications. We identified different
attackers, which led to an 800% slowdown for a user application running in a Docker container.
In addition, the effect of different file system attackers was explored, and several performance
bottlenecks were identified.

Declaration

No portion of the work referred to in this report has been
submitted in support of an application for another degree or
qualification of this or any other university or other institute

of learning.

Copyright

1. The author of this thesis (including any appendices and/or schedules to this thesis) owns
certain copyright or related rights in it (the “Copyright”) and s/he has given The Uni-
versity of Manchester certain rights to use such Copyright, including for administrative

purposes.

1. Copies of this thesis, either in full or in extracts and whether in hard or electronic copy,
may be made only in accordance with the Copyright, Designs and Patents Act 1988
(as amended) and regulations issued under it or, where appropriate, in accordance with
licensing agreements which the University has from time to time. This page must form

part of any such copies made.

ii1. The ownership of certain Copyright, patents, designs, trade marks and other intellectual
property (the “Intellectual Property”) and any reproductions of copyright works in the
thesis, for example graphs and tables (“Reproductions”), which may be described in
this thesis, may not be owned by the author and may be owned by third parties. Such
Intellectual Property and Reproductions cannot and must not be made available for use
without the prior written permission of the owner(s) of the relevant Intellectual Property

and/or Reproductions.

iv. Further information on the conditions under which disclosure, publication and commer-
cialisation of this thesis, the Copyright and any Intellectual Property and/or Reproduc-
tions described in it may take place is available in the University IP Policy (see http://
documents.manchester.ac.uk/Doculnfo.aspx?DocID=24420), in any relevant The-
sis restriction declarations deposited in the University Library, The University Library’s
regulations (see http://www.library.manchester.ac.uk/about/regulations/)) and

in The University’s policy on presentation of Theses

http://documents.manchester.ac.uk/DocuInfo.aspx?DocID=24420
http://documents.manchester.ac.uk/DocuInfo.aspx?DocID=24420
http://www.library.manchester.ac.uk/about/regulations/

Acknowledgements

I want to thank my project supervisor, Dr. Pierre Olivier, for their continuous support and
guidance and for giving me many learning opportunities throughout the work on this project.
Furthermore, I am thankful for the support from the Unikraft open-source community in help-
ing me resolve various issues while testing and analyzing Unikraft.

Finally, I am very grateful to my family and friends for their help and support throughout

my studies at the University of Manchester.

Chapter 1

Introduction

1.1 Motivation

The popularity of cloud computing has been vastly increasing in the last couple of years. As
a result, the most significant cloud providers generate over 200 billion dollars annually [30].
Due to the increasing popularity, more and more companies are switching towards using public
cloud providers instead of managing their hardware infrastructure. In addition, using cloud
environments for deploying software provides many benefits for users. For example, users
can deploy their software products anytime without worrying about buying, installing, and
maintaining many hardware devices. Furthermore, users can always scale their usage based on
their needs, whether renting new hardware devices or stopping the rent for devices no longer
needed.

Cloud environments rely on the concept of virtualization. For years, virtual machines were
the central concept of virtualization, running the cloud environments [8]. However, due to
their high overhead, the focus has been on more lightweight virtualization systems in the last
few years. Containers and unikernels are the most popular lightweight virtualization systems.
Lightweight virtualization systems outperform traditional systems in all scenarios. Due to the
significant performance benefits of lightweight virtualization systems, they are becoming the
preferred tools in cloud environments.

Performance is the most crucial characteristic of software systems. Since all engineers aim
to maximize their software’s performance, the overhead of any virtualization system should
be minimized. Motivated by this, we explore the performance of lightweight virtualization
systems in a more realistic cloud environment. We use different types of applications to sim-
ulate different realistic scenarios, which are most likely to be happening every day in cloud

environments.

CHAPTER 1. INTRODUCTION 10

1.2 Project Aims

This project consists of two well-connected performance analyses, Assessing Scalability and
Performance Isolation.
The primary aim of the first part is to observe how different virtualization systems behave

in realistic large-scale cloud environments. Therefore, the three main aims of this part are:

* Establish a model for benchmarking different virtualization systems on a larger scale to

simulate realistic environments.
» Use this model to identify scalability bottlenecks and issues.

* Generate analytics from the model to decide which virtualization systems are best in

different scenarios.

The second part aims to understand the impact two or more virtual system instances might

have on each other. Similarly to the experiment above, we aim to:

* Establish a model for benchmarking the impact of one system on another system running

simultaneously.
* Generate analytics on how misbehaving systems impact well-behaved systems.

» Use these analytics to detect potential bottlenecks in the systems.

1.3 Report Structure

This report is organized into six chapters. In the first chapter, we introduce the motivation
behind the study performed and provide our work’s main aims and objectives.

The second chapter covers the background knowledge for our project and describes the in-
ternal designs and architectures of the systems we benchmark. The third chapter overviews our
benchmark process, including the software system used and the guidelines for benchmarking
the systems.

This report analyzes two performance elements critical for building suitable cloud environ-
ments. In the fourth chapter, we discuss the first element, assessing scalability. Moreover, in
the fifth chapter, we look at performance isolation, the second element we analyze.

Finally, in the sixth chapter, we conclude our work, describe the limitations of our analysis,

and look at future work that might be performed on the topic of our study.

CHAPTER 1. INTRODUCTION 11

1.4 Literature Review

Many engineering teams are interested in creating scalable systems. However, only a few
experiments are performed to examine specific systems’ scalability. Typically, authors focus
on one particular system and explore the issues in the system in more detail. For example,
Swift Birth and Quick Death: Enabling Fast Parallel Guest Boot and Destruction in the Xen
Hypervisor [24]] explores three different issues impacting the Xen Hypervisor scalability. The
authors implement changes that improve the scalability of the hypervisor’s boot and destruction
time. An Analysis of Linux Scalability to Many Cores [2] looks at the Linux kernel’s scalability.
The authors propose application and kernel code changes to improve the system’s scalability.
Opportunistic Spinlocks: Achieving Virtual Machine Scalability in the Clouds [12] analyses
the scalability of execution time on virtual machines from different cloud providers. The paper
suggests a new type of spinlock that resolves various scalability bottlenecks in VM scalability.
However, the paper only looks at one type of benchmark: the time required to compile the
Linux kernel. Most research papers on scalability only analyze one system or benchmark in
more detail. Our project aims to test different systems and user applications and simulate more
realistic user behaviors.

Performance Isolation is a more popular research topic. Different authors have performed
performance isolation experiments with containers [42} 43]] and virtual machines [6, 9]. How-
ever, due to the popularity of containers, most of the new research focuses on the performance
isolation of containers. In our report, we try to extend the most common performance isolation
benchmarks for containers to unikernels and discuss the differences.

Significant work has also been done on improving the performance isolation of contain-
ers through unique mechanisms. For example, PINE: Optimizing Performance Isolation in
Container Environments [[14] suggests a mechanism to allocate storage resources to containers
based on the performance behaviors of the container. Similarly, Characterizing and Opti-
mizing Kernel Resource Isolation for Containers [41] offers a Pareto-based identification of
misbehaving containers and allocation of resources based on this identification. Both of these
papers suggest approaches that improve the performance isolation of containers. However, they
add certain performance overheads to the system. Furthermore, significant engineering effort

is required for their implementation.

Chapter 2

Background

2.1 Virtualization

Virtualization is one of the main drives of cloud computing. Virtualization refers to abstracting
hardware resources into virtual software versions that are easier to use. One of the most com-
mon forms of virtualization is virtual machines. Cloud providers can rent the same hardware
machine to several consumers simultaneously using virtual machines.

Virtual machines are the perfect tool for cloud computing. By using virtual machines,
the consumer does not know anything about the other users of the same hardware device.
Furthermore, as each user can run different operating systems, they do not limit the user’s
actions. One of the virtual machines’ most crucial benefits is their isolation. Each virtual
machine running on the same hardware is isolated from the other virtual machines, and any
security risk or attack is limited to only one instance.

The operating systems use hypervisors to make virtualization possible. Hypervisor is a
software component of the operating system that controls the computing resources, such as
networking, memory, disk, and processing resources. It exposes them to guest virtual machines

through a simple interface. There are two different types of hypervisors:

* Type 1 hypervisor runs directly on the hardware and has access to the hardware resources,
controlling them for the guest’s virtual machines. Type 1 hypervisor is also known as bare

metal or a native hypervisor [40].

* Type 2 hypervisor runs as software on another operating system. Since it does not have
direct access to the hardware resources, it performs worse than type 1 hypervisors, which

are more efficient.

12

CHAPTER 2. BACKGROUND 13

Typically, type 1 hypervisors are used for large data centers, while type 2 hypervisors are used
more as end-user tools. Figures[2.Ta|and [2.1b|present the schematic architectures of type 1 and
type 2 hypervisors.

Virtual machines are great tools to abstract the hardware away from the user. However,
virtual machines take up much storage space due to their large image size. Furthermore, virtual
machines are slow due to their large size, taking a long time to modify, build, transport, or boot
[44].

Lightweight virtualization systems were created to resolve the problems with heavy virtual
machines. As a result, they provide much better performance results than traditional virtual
machines.

Two of the most common lightweight virtualization systems are containers and unikernels.
In this report, we will investigate and compare the performance of Docker [21]], a tool for build-

ing and running containers, and Unikraft [13]], an open-source development kit for unikernels.

System Calls System Calls

Guest Guest

System Calls System Calls . .
Virtual Machine Virtual Machine

Guest Guest
Virtual Machine Virtual Machine

Hardware

(a) Type 1 Hypervisor (b) Type 2 Hypervisor

Hardware

Figure 2.1: Schematic architecture of different hypervisors

2.2 Containers

Containers are currently one of the most popular virtualization systems. Still, they are differ-
ent from traditional virtualization systems. For example, containers do not require hypervisor
software. Instead, the container engine runs each container as a separate process on the same
host operating system.

The host operating system already contains many isolation mechanisms for separating two

CHAPTER 2. BACKGROUND 14

processes. Container applications leverage these mechanisms to build and run isolated pro-
cesses efficiently. The two main components containers rely on for running are kernel names-
paces and cgroups.

Kernel namespaces are a part of the Linux kernel, making it possible to split the available
hardware resources so that each process can only see the resources allocated to them. In the
Linux kernel, there are many different types of namespaces, such as user namespaces for con-
trolling the users of the same operating system, process namespaces for managing the resources
different processes can access, or network namespace for controlling the network access on the

device.

Container 1 Container 2

Container Engine (Docker)

Figure 2.2: Overview of a containerized system

Control groups, or cgroups, are another part of the Linux kernel, allowing the host to mod-
ify and limit each process’s resources. Cgroups allow easy control over specific physical re-
sources’ limitations, prioritization, and accountability. As a result, physical resources can be
split between users and processes, allowing fair and efficient use of these resources. Nowadays,
cgroups are known to be used by container engines. However, they are part of the Linux kernel
and can be easily used by any other application.

In conclusion, kernel namespaces provide isolation between different resources, and cgroups
allow for easy control and enforcement of this isolation [11]. Containers are built on top of
these two features, and container engines heavily exploit them to provide isolation between
many containers running simultaneously. Figure [2.2] presents the high-level architecture of a
system that runs containers. The container engine is responsible for interaction with the host

operating system. It creates and manages the containers running on the host.

CHAPTER 2. BACKGROUND 15

2.2.1 Docker

There are many different container engines. However, one of the most popular nowadays is
Docker [4]. Furthermore, Docker is open-source, simple, and free to use. These characteristics
make Docker a perfect candidate for our study.

Docker is a set of tools to automate the process of building, running, and deploying con-
tainers. It is currently one of the most popular engines for running containers. It consists of
a container engine that manages the whole process, a client CLI tool, and a container registry
where many container images are stored. We present the architecture of Docker in figure 2.3]
The container engine is also known as the Docker daemon; it runs on the host and can build
Docker images, which can then be run as separate containers. Furthermore, it can pull data
from the Docker registry, which contains images for many user applications, such as databases,

web servers, data stores, or other programming environments.

Docker Remote
Docker Daemon Registry

client - inx Image -7 S
H E - Redis Image
-

Redis | -
edis mage - Ubuntu Image
-

docker build

Remote API docker run
docker pull Ubuntu Image MySQL Image
Python Image

Java Image

MongoDB Image

Figure 2.3: Docker system architecture

Docker also has a rich software ecosystem, such as tools for automating the build process or
monitoring the containers’ status. Because of their simplicity and the rich software ecosystem,
Docker containers are the preferred deployment tool for many engineers.

However, since containers still run on the same operating system, the container engine does
not provide complete isolation between different containers [41]. The incomplete isolation
between different processes running as containers creates a significant security risk. In a hy-
pothetical scenario, if one process bypasses the container engine’s isolation layer, it can access
all the resources the operating system manages. A study conducted in 2018 found more than
200 exploits effective on Linux containers [15]. Many teams have been working on improving
container security, and there are new types of containers that aim to improve container security,
like gVisor. However, the new layers of isolation this type of container introduces decrease the
application performance significantly [42].

Another alternative to containers are unikernels. Unikernels are known to be very lightweight

systems, requiring significantly fewer resources and giving much better performance. In the

CHAPTER 2. BACKGROUND 16

next section, we focus on exploring unikernels.

2.3 Unikernels

In traditional operating systems, the CPU works in two different execution modes: kernel
mode and user mode. While running in kernel mode, the process has unlimited access to the
CPU, memory, and other device resources. On the contrary, the process has limited access to
hardware resources in user mode. Two separate kernel modes are an essential component of
operating systems, as external applications might be harmful, and the operating system can-
not trust such applications. In environments where multiple applications run simultaneously,
having two kernel modes is non-negotiable.

However, each component will likely run only one application in cloud computing envi-
ronments [16]. For example, such components might be web servers, data stores, databases, or
other computing programs. If only one application runs in the whole operating system, having
two separate kernel modes is redundant. The switches between kernel and user modes will only
consume resources, while they will not provide any additional security or isolation benefit.

Unikernels are small virtual machine images that run only one application, and their kernel
always runs in only one mode [[17]]. In unikernels, the software code is compiled with the kernel
code resulting in a tiny virtual machine.

Figures [2.4a] and [2.4b| retrospectively present the high-level architecture of unikernels run-
ning on Type 1 and Type 2 hypervisors. Having only one kernel mode makes unikernels per-
form significantly better than containers and virtual machines [13]]. In this report, we will focus

on Unikraft. Unikraft is a novel open-source development kit for unikernels.

2.3.1 Unikraft

Unikraft is designed to be minimal in size. Therefore it supports full modulation of compo-
nents, drivers, and libraries [13]. In addition, users have complete control over which kernel
and library ecosystem components are included in the image they are building. Full modula-
tion is impossible in traditional operating systems based on Linux, as all libraries in the Linux
kernel are heavily dependent on each other. However, all Unikraft libraries are designed and
implemented with full modulation and configuration in mind.

Unikraft supports system calls from the Portable Operating System Interface (POSIX) in-
terface. This support makes it easier to port existing applications to work in Unikraft. Further-

more, it supports platform-independent image generation for different hypervisors and virtual

CHAPTER 2. BACKGROUND 17

System Calls
System Calls

Guest

Virtual Machine

System Calls

Unikernel Core

System Calls

Guest
Virtual Machine

Hardware Hardware

(a) Unikernel on a type 1 hypervisor (b) Unikernel on a type 2 hypervisor

Unikernel Core

Figure 2.4: Unikernels running on different hypervisors

machine monitors. Such support is helpful in scenarios when we need to deploy the unikernel
image to many devices. For example, instead of transporting a large source code or container
image, we can build the image in one host and then transport only the compiled image to all
other devices.

To build a unikernel that supports all these functionalities is difficult. As a result, Unikraft
was built from scratch, as other projects did not have fully independent components and li-
braries.

Figure [2.5] shows the overview of building a new Unikraft image. On the left side, we can
notice the whole pre-build setup. First, we have the Application code and Configuration files
on top of the stack. Then the third-party libraries and the operating system/kernel code follow.
Finally, we have the platform code and the hardware resources. Such application, OS, and
kernel code setup is the typical setup required to run a user application on a traditional virtual
machine.

Instead of using the whole code on the left, Unikraft takes the application code and fetches
and prepares the required libraries. It then compiles the kernel, libraries, and application code
separately. Then, finally, it links all the code together in a single unikernel image. The exciting
and important thing here is that the compiled Unikernel image is tiny, as it only contains a few

parts from the kernel functionalities, a few libraries, and the application code itself.

CHAPTER 2. BACKGROUND 18

Configuration Build Configuration

3rd Party Libraries
=4 q
k=] N
] § Fetch & Prepare
s v
< Operating System Compile
] v
@ Link
£ v
Kernel —
&
_ Application-specific Libraries g
°©
f=
g
Platform =
5

Figure 2.5: Overview of the Unikraft build process. Credits: Unikraft Documentation,
//unikraft.org/docs/concepts/build-process/

https://unikraft.org/docs/concepts/build-process/
https://unikraft.org/docs/concepts/build-process/

Chapter 3

Benchmark Overview

3.1 Infrastructure Configuration

We used a dedicated server machine to run all benchmark experiments. It has two Intel Xeon
520 processor chips, each running on a 2.2 GHz frequency. Each chip comprises 26 physical
cores containing two threads, resulting in 52 per-chip threads or 104 total hyper threads. In

addition, the processor has three levels of cache:

* L1 cache is shared by one core; It consists of two types: L1d 48KB for caching program

data and L1i 32KB for caching program instructions.

» L2 cache is also shared by one core; It consists of a 1280KB total cache capacity shared

by two threads on the same core.

* All cores share the L3 cache on the same chip; It consists of a 39 MB total cache capacity.

Besides the processing unit, the main memory plays a vital role in software systems’ per-
formance. Our device has 64GB DDR4 RAM running on 3200 MHz. As a disk storage, our
device uses a 1TB Intel SSD.

Ubuntu 22.04 LTS was installed on our machine, and all experiments were compiled with
GCC v11.3.0. To automate the execution of the benchmarks, Python 3.8.10 was used. In all of
the benchmarks, we used Docker v23.0.1. Since Unikraft is developing more, we used v0.10.0
in the scalability experiments. However, for the performance isolation experiments, we update
the version to v.0.12.0 as it contains relevant updates. All Unikraft images were run on QEMU
emulator version 6.2.0 (Debian 1:6.2+dfsg-2ubuntu6.7).

19

CHAPTER 3. BENCHMARK OVERVIEW 20

3.2 Benchmark Software

We implement a CLI tool named experiment runner to simplify the benchmark process.

3.2.1 Design Decisions

The main goal of the experiment runner CLI was to make it possible to quickly prototype new
experiments and easily extend them to larger-scale benchmarks. Bash is the most straight-
forward language for implementing automatic Linux scripts. However, Bash does not support
advanced language functionalities. On the other hand, Python is one of the most popular script-
ing languages and supports all functionalities we need. Therefore, we decided to use Python
for our scripts. The CLI tool was written using the Click library for Python. Click stands for
Command Line Interface Creation Kit, and it is a popular Python library that simplifies writing
a more extensive CLI tool.

Creating modular and reusable components was our second priority while implementing
the scripts. Reusable components let us quickly change our experiments and adapt the scripts
to new requirements.

Finally, we tracked the code base changes using Git source control. We hosted the whole
project on a private repository on GitHub [34]]. We decided to open-source the project once it

was finished to ensure our results were reproducible and valuable for others.

3.2.2 Architecture

SQLite scalablllty benchmarks

Boot time scalablllty
benchmarks

Memory usage scalahlllty
benchmarks

Nginx scalability benchmarks
Redis scalablllty benchmarks

Compute/ Memory Intensive

|
(6]
—
[
c
=
S
2
o
c
@
=
=
[
o
3
w

Performance Attackers

1/0 Intensive Performance
Attackers
Network Intensive
Performance Attackers

4
9]
c
3
©
o
)

Figure 3.1: High-level architecture of the experiment runner CLI

Figure [3.1] presents the architecture of the experiment runner we described above. Every

interaction is started by running the experiment runner CLI tool. Once the experiment runner

CHAPTER 3. BENCHMARK OVERVIEW 21

is called, it activates one of the two types of experiments: scalability or performance isolation
experiments. There are different types of benchmarks, depending on the application or param-
eter we are interested in analyzing. Irrelevant of which experiment we decided to run, each
uses the helpers’ library we implemented. The benchmark helpers library consists of two types
of helpers: spawner helpers and general helpers.

The spawner helpers have various functions for running Docker containers and Unikraft
VM images. There are multiple arguments that we control through these spawner helpers:
name and version of the image we are starting, network parameters we pass to the image (IP
address and port), whether we want to mount a file system to the image or not, or setting up
any limits on the CPU or memory usages for the image.

The general helpers comprise another group of functions, primarily focusing on simplifying
the benchmarking process. The helpers in this group include wrk helpers for benchmarking
Nginx servers, redis-benchmark helpers, SQLite benchmark helpers, and CPU and memory
usage helpers. All these helpers make it possible to automate the whole process and quickly
run extensive benchmarks, such as spawning thousands of images and benchmarking their
performances.

Another essential feature of the experiment runner is the benchmark cleaner. This part
closes all the Docker containers or Unikraft images started during the benchmark process.
Having such functionality was very helpful, as sometimes unpredicted behavior happens when
working with applications on a larger scale. For example, some containers or VM images
might crash in various situations. Without the automated cleaners, the whole server would be

unusable, requiring a hard restart to unblock.

3.2.3 Usage

During the scalability benchmarks, we often launch many container or unikernel instances.
Therefore, we need to launch more instances for each benchmark and then measure some

performances iteratively. The CLI tool we created takes four input arguments to run:

1. Experiment name: each experiment we have designed is given a unique name. This
name helps identify the experiment we want to run. Table in the appendix contains
the code names for each experiment we have created.

2. Repetition times: specifies the number of repetitions for our benchmarks. We ran each

experiment at least five times to get more detailed results.

3. Benchmark times: specifies the number of times we perform the benchmark inside each

CHAPTER 3. BENCHMARK OVERVIEW 22

experiment repetition. This argument is essential in the scalability experiments because

it defines how long we run each repetition.

4. Instances per benchmark: specifies the number of instances we launch between two con-
secutive benchmarks in a single repetition. This argument only applies to scalability
benchmarks.

For example, running: python3 experiment _runner.py --runs 5 --name uk_ng.s --benchmark_time
3 --instances_per_benchmark 10 will execute the Unikraft Nginx Scalability experiment

5 times. In each of the five runs, it will first start one Nginx instance and measure its perfor-

mance using wrk benchmark. It will then launch ten additional stress instances (as specified

in the instances_per _benchmark argument) three times (as defined in the benchmark_times

argument). After every ten new instances, it will perform a new wrk benchmark. This com-

mand will collect 20 benchmark results, 4 in each of the five repetitions it executes. These four

results represent the performance of Nginx on Unikraft:

When it runs as a single process on the machine.

When there are ten stress instances in the background.

When there are 20 stress instances in the background.

When there are 30 stress instances in the background.

We discuss the scalability benchmark process in Chapter 4] and the performance isolation

benchmark process in Chapter [3]

3.3 Benchmark Guidelines

To ensure the validity of our results, we repeated each scalability experiment at least five times.
On each graph, we plot the average execution time, including the standard deviation observed
in the results.

For the performance isolation experiments, we repeated them 20 times. This decision was
made because the performance isolation experiments require significantly less completion time.
In comparison, the scalability experiments require longer to execute due to the high load we
are generating.

Chapter 4

Assessing Scalabiliy Methodology &
Results

Scalability typically refers to a system, either hardware or software, to handle an increased
load in work or operations. For example, scalable systems operate well when the load or traffic
doubles in size or volume. Scalability is a general term, and there are many different types of
scalability in computer systems, such as load, space, space-time, or structural scalability [[1].
Scalability is of crucial importance in modern computer systems. Users expect 100% avail-
ability from the service they are using, and even short downtimes due to increased network
load mean a loss of money for the business. Furthermore, in cloud computing environments,
cloud consumers expect optimal performance irrelevant of the number of consumers using the
same hardware machine. In this chapter, we will investigate and analyze how the performance
varies as the number of user applications on the same machine increases. We will compare the

performance of applications run on Docker and Unikraft at different scale levels.

4.1 Benchmark Design Overview

Our experiments simulate a realistic cloud computing environment with a single hardware ma-
chine. Increased load in a cloud environment typically refers to more users accessing the
resources on the device. To provide a good user experience for all cloud consumers, increasing
the load on a single machine should not impact any user’s system performance.

We have a primary user application whose performance we observe in our scalability bench-
marks. We run different user applications in each of our benchmark analyses. This user appli-
cation is always relevant to the behavior we are trying to observe. We observe the performance

of the user application when it is a single process running on the machine. We then load the

23

CHAPTER 4. ASSESSING SCALABILIY METHODOLOGY & RESULTS 24

system by starting a various number of background instances. Once more instances are started
in the background, we observe the performance again. To collect fine-grained data, we observe
the application’s performance after every ten instances started.

We are interested in something other than the performance of a single virtual system in-
stance. Such performance evaluation is another research topic, and both Unikraft and Docker
have been carefully evaluated [13]. Instead, we are interested in how the behavior of these
systems changes as we increase the operation scale by launching large amounts of instances on
a single machine.

Launching new instances and measuring the user application’s performance is controlled
by the benchmark CLI, described in Chapter

Typically benchmark experiments can be divided into two categories: microbenchmarks
and macrobenchmarks. Microbenchmarks usually track and test small characteristics of a
particular system. Microbenchmarks work in isolation, and they only focus on one specific
overhead. On the other hand, macrobenchmarks are more extensive tests that aim to simulate
real-world user load. As a result, micro and macrobenchmarks give us valuable insights into
different aspects of the systems. This chapter first examines two scalability microbenchmarks:
boot time and memory usage. Then, we look at two more significant macrobenchmarks that

aim to thoroughly test the performance of the two virtualization systems we are analyzing.

4.2 Microbenchmarks

4.2.1 Boot Time Analysis

The first experience of cloud consumers with a rented cloud machine is booting their virtual
system. In this experiment, we will compare the boot times of Docker and Unikraft on different
scale levels. We will focus on the changes in boot time as more and more background systems
are launched.

To design a fair experiment for measuring the boot time of any virtualization system, we
first need to look at what happens when a particular virtualization system starts a new instance.
To understand the boot process, we will examine what happens when a new Unikraft and
Docker instance is run.

Firstly, we will look at the boot process of a Unikraft virtual machine. It consists of three

different stages:

1. Boot time of the emulator (QEMU). Once the emulator is booted, it initiates the boot of
the kernel.

CHAPTER 4. ASSESSING SCALABILIY METHODOLOGY & RESULTS 25

2. Boot time of the Unikraft kernel. Once the kernel is successfully booted, the user appli-

cation boot process starts.
3. Boot time of the user application.

To fairly measure the boot time of a Unikraft instance, we need to remove the overhead of the
user application code. To do this, we modified the helloworld Unikraft template [33]. The
helloworld Unikraft template is a tiny user application that can quickly launch a new Unikraft
instance that only prints hello world to the terminal and exits. This application adds a negligible
application overhead to the boot time as it compiles with the rest of the kernel code.

Secondly, we will look at the boot process of a Docker container. Similarly to Unikraft, it

also consists of three separate components:

1. Container creation. The docker daemon creates a new container instance and initiates the

boot process of this instance.

2. Boot time of the container. The container instance boots and initiates the boot command

described in the dockerfile specification.
3. Boot time of the user application.

Similarly to what we described for Unikraft above, we want to exclude any boot time of the user
application for Docker containers. To achieve this, we compiled a tiny C code that only prints
hello world to the terminal and exits. Again, similarly to Unikraft, this only adds a negligible
performance overhead and allows us to measure the boot time precisely.

Measuring time precisely in an operating system is difficult because the system schedules
things on and off the processor, giving only an approximate time measurement. To measure the
boot time as precisely as possible, we use the gettimeofday system call. We compiled and
used a small program that executes any application program and measures the time it takes for
this execution [25]].

Our analysis focuses mainly on the change in boot time as the number of background in-
stances increases. Therefore, we do not measure the exact boot time for a single instance, as
this involves more in-depth analysis and measurements of all software parts involved in the
boot-up process. Other authors have performed a more in-depth analysis of the boot times of a
single instance for both Docker [26] and Unikraft [13]].

To perform a scalability analysis of the boot time, firstly, we measure the time required
to boot a single instance of Unikraft or Docker when the system is free and not doing any

work. Then, we start a new ten instances in the background, which only stress the container

CHAPTER 4. ASSESSING SCALABILIY METHODOLOGY & RESULTS 26

engine and the hypervisor, as they only contain a small C program that executes the sleep ()
command. Once the ten new instances are started, we again measure the boot time of a small
helloworld instance. We repeat this 100 times, giving us the change in boot time as we launch
up to 1000 background instances.

Boot Time Analysis on Docker and Unikraft Boot Time Analysis on Docker and Unikraft (normalized to first run)

—— Docker boot time
Unikraft boot time

15 —— Docker boot time
Unikraft boot time

,;; (]

E 12 E 14

0 3

V10 S 13

c o

b g

V0.8

£ £

: 0.6 £

°© 511

2 =

@ 0.4 10

0 100 200 300 400 500 600 700 800 900 1000 0 100 200 300 400 500 600 700 800 900 1000

Number of background sleep instances Number of background sleep instances
(a) Raw data analysis (b) Data normalized to first run

Figure 4.1: Combined boot time anlysis of Docker and Unikraft (lower is better)

Figure presents the combined boot times of both Docker and Unikraft. To better un-
derstand how the boot times change compared to the boot time of the first instance, we also
present Figure [4.Tb] where the boot times are normalized based on the first run.

Firstly we will look at the change in the boot time of Docker containers. In general, boot-
ing a new Docker instance takes much longer than booting a new Unikraft instance because
unikernels are more lightweight than container images, making their boot times much shorter.
Moreover, we can observe that the boot time of a new Docker container increases linearly. In
addition, figure shows that booting the 1000th container takes roughly 50% longer than

booting the first container on a single machine.

Docker Boot System Resource Availability (normalized) Unikraft Boot System Resource Availability (normalized)

-

in
-
=

Docker boot time (normalized)
—— SWAP availability
—— RAM availability
—— CPU availability

-
¥

-
o

e
W

i
o
o

o
o

Unikraft boot time (normalized)

—— SWAP availability
—— RAM availability
—— CPU availability
0 100 200 300 400 500 600 700 800 900 1000 0 100 200 300 400 500 600 700 800 900 1000
Number of Sleeping Background Instances Number of Sleeping Background Instances

o
S

o
Y

System Resource Availability
& & 5 =&
System Resource Availability

°

3
o
o

(a) Docker (b) Unikraft

Figure 4.2: System resource availability in the boot time experiment

In Figure 4.2a) we present the change in system resource usage as we perform the boot

CHAPTER 4. ASSESSING SCALABILIY METHODOLOGY & RESULTS 27

time experiment for Docker. From this figure, this experiment does not generate any significant
CPU, memory, or swap activity. Therefore, the slowdown is likely a bottleneck in the Docker
container engine. Other authors have found similar bottlenecks in hypervisor engines, such as
the Xen hypervisor engine [24].

The change in boot time for Unikraft contains more exciting patterns than the boot time
benchmark for Docker. First, we can observe that the boot time till around the 800th instance
remains stable and does not increase by more than 10%. However, once we go over this thresh-
old, the boot time significantly increases. To understand this in more detail, we must also look
at the system resource usage patterns while performing this benchmark.

Figure[d.2b|presents the CPU, main memory, swap memory usage, and boot time change for
Unikraft. This figure shows that around the 800th instance, the RAM availability has decreased
to less than 20%. Furthermore, the operating system has started using the swap memory, whose
availability is also falling. Accessing the swap memory includes accessing the disk storage
device, which is much slower than accessing the machine’s main memory. Therefore, memory
availability is the leading cause of the boot time slowdown of new Unikraft instances.

In conclusion, Unikraft outperforms Docker in the boot time scalability analysis. Further-
more, it boots in a significantly shorter time. Such difference makes Unikraft a better choice
for applications with crucial boot time.

Since primary memory availability plays a vital role in the performance of the virtualization
systems we analyze, in the next subsection, we take a more detailed look at how these systems

use memaory.

4.2.2 Memory Usage Analysis

Docker Memory Usage Analysis Unikraft Memory Usage Analysis

0.80
075 —— SWAP availability
—— RAM availability

0 100 200 300 400 500 600 700 800 900 1000 0 100 200 300 400 500 600 700 800 900 1000
Number of Sleeping Background Instances Number of Sleeping Background Instances

—— SWAP availability
—— RAM availability

Normalized Memory Availability
P
&

Normalized Memory Availability

(a) Docker (b) Unikraft

Figure 4.3: Scalability memory usage analysis of Unikraft and Docker

Apart from just benchmarking the boot time, we also look at the memory usage of both

CHAPTER 4. ASSESSING SCALABILIY METHODOLOGY & RESULTS 28

lightweight virtualization systems on a larger scale. Similarly to the boot benchmark, we are
not interested in the detailed memory usage of a single Unikraft or Docker instance. Instead,
we focus on how the memory usage changes as we increase the scale of instances launched on
the same device.

To measure the change in memory usage of Unikraft and Docker on a larger scale, we used
a similar experiment as in the boot time benchmark. In turn, we start ten new instances and
measure memory usage. Then, we repeat this 100 times, observing the change in memory
usage as we launch 1000 instances. We want to avoid the memory overhead of the application
running inside the virtual systems. To do this, inside the Unikraft image and Docker container,
we run a C program that infinitely executes the sleep function. When this program is compiled,
its size 1s minimal.

Furthermore, since it does not interact with any data, its memory consumption is negligible.
Such load of spawning many virtual systems puts the most stress on the hypervisor, QEMU for
Unikraft, and Docker’s container engine. Figures and[.3b|show the differences in memory
usage of Docker and Unikraft.

It is essential to mention that the pattern of using large amounts of memory is not because of
the Unikraft kernel. Instead, most of the memory overhead is used by the hypervisor, QEMU.
QEMU uses as much as possible of the available memory. Once it does not have enough mem-
ory, it adapts and uses less memory. Such an approach is reasonable if only a few instances run
on the same device. It uses more memory to provide better application performance. However,
the memory gets filled up quickly, and the operating system has to activate the swap func-
tionalities. Swap memory access is slower than main memory and decreases the application’s
performance. On the other hand, Docker has a slightly more conservative memory consumption
and only uses a minimal amount of memory required to run the application.

The boot time and memory usage are essential characteristics of computer systems. How-
ever, these metrics give us little insight into how these systems perform in realistic scenarios.
Furthermore, isolated metrics like boot time do not provide us any indication of the perfor-
mance of the application after it boots. To understand how the applications perform after the
boot process finishes, we need to look at macro benchmarks that measure the overall perfor-
mance of Unikraft and Docker. Motivated by their popularity, we look at two categories of

applications: network-intensive and storage-intensive.

CHAPTER 4. ASSESSING SCALABILIY METHODOLOGY & RESULTS 29

4.3 Network Intensive Applications

Many teams of engineers build network applications, either as web services, data, or other
types of services. As a result, network applications are one of the most popular applications
hosted in cloud environments. People usually associate network applications with client-server
web applications. However, another group of typical network applications is data stores. Data
stores are network applications that store and manage information in different formats. SQL or
NoSQL databases, file storage systems, or in-memory databases are typical data stores.

Since web servers and data stores are among the most common applications used in cloud
environments, we chose to benchmark two different applications and see how their performance

changes as we increase the benchmark scale.

4.3.1 Nginx

Firstly, as a web server, we chose to benchmark Nginx. Nginx is an open-source software
offering an extensive list of functionalities to users. It can be a simple HTTP server, load
balancer [23l], mail proxy [22], or HTTP cache server. As a result of all the functionalities
it can perform, according to some analysis, it is currently the most popular web server [31].
Another study by Datado suggests that Nginx is the most popular application run in Docker
containers [S)]. Nginx is also ported and available in Unikraft, making it a perfect candidate for
our study.

There are many popular benchmark tools for HTTP web servers. However, we chose to
use the wrk benchmark tool. It is an open-source modern HTTP benchmark tool and is easy to
configure and use [7]. However, even though wrk is a simple tool, it can generate a significant
load to the web server we are testing. Furthermore, benchmarks for Unikraft have already been
performed using wrk [13], and using the same benchmarking tool keeps these benchmarks
consistent. In addition, the following wrk configuration was used: 30 parallel connections
running on 14 threads for 20 seconds.

The main problem we want to understand is whether many Nginx instances launched on the
same host influence the performance of a single instance running on the machine. To get more
insights into this issue, we first benchmark Nginx’s performance on both systems when it runs
as a single instance on the machine. We then launch ten additional Nginx instances on either
Unikraft or Docker, and we observe the performance of this one instance again. Finally, we
repeat the process of launching ten more instances and benchmarking the one instance until we

launch up to 1000 background instances. The instances we launch in the background are Nginx

'Datadog is a company providing tools for monitoring servers, databases and services

CHAPTER 4. ASSESSING SCALABILIY METHODOLOGY & RESULTS 30

servers that do not perform any activity, only wait in the background. Figure presents the

combined performance of Unikraft and Docker when benchmarking a single Nginx web server.

Nginx Performance on Docker and Unikraft Nginx Performance on Docker and Unikraft (normalized to first run)
Q
1.75]
o ©
0 5150 /\/\,\,\N\/\/\/\/\/\«/U\-/\J\[\/\/\/*’\/‘/N\/W £ 1.2
28 2
S w125 510
-
g & 1.00 —— Docker Nginx (wrk) performance ;‘
c @ Unikraft Nginx (wrk) performance =
guors 5 08
~ O @
= N
5= 00 =
E = 3 ;
~ 0.25 = —— Docker Nginx (wrk) performance
§ Unikraft Nginx (wrk) performance

0 100 200 300 400 500 600 700 800 900 1000 0 100 200 300 400 500 600 700 800 900 1000
Number of Background Nginx Instances Number of Background Nginx Instances

(a) Raw data analysis (b) Data normalized to first run

Figure 4.4: Combined wrk benchmark performance of Nginx on Docker and Unikraft (higher
1s better)

We notice that Unikraft processes slightly fewer requests per second than Docker. This per-
formance difference happens because our experiment used the default Unikraft configuration
to generate the Nginx image. However, Unikraft is fully configurable, and many parameters
must be configured correctly to achieve optimal performance. This is explored in more detail
in the original Unikraft paper, where the optimal performance for each application on a single
instance is benchmarked [[13]]. In our work, we focus on how the performance changes when
many applications are run simultaneously.

To get a clear image of how the performance changes as we increase the number of back-
ground images, we present the performance of both Docker and Unikraft normalized to the
single instance performance in Figure [4.4b] From this figure, we can notice that the perfor-
mance of Docker remains stable, and any background instances do not impact the performance
of the server we are benchmarking. On the other hand, we can observe that the performance of
Unikraft decreases as we increase the number of background unikernels. Overall, after 1000
background unikernels, it reduces by around 50%. A scalability bottleneck in the Unikraft ker-
nel or network library likely causes this. Another reason for the reduced performance might be
the overhead of the Qemu hypervisor.

Another pattern we can observe is that the Docker experiment of Nginx performs slightly
better as more instances are launched. This performance improvement happens because the
first instance starts with a cold cache, and nothing from the main memory is cached. However,
once we start performing more experiments, the operating system caches much information
required to execute the experiment, improving its performance.

Figures and [4.5b] present the system resource availabilities in Docker and Nginx when

CHAPTER 4. ASSESSING SCALABILIY METHODOLOGY & RESULTS 31

=
o

N
o
)

wrk performance
—— SWAP availability

Docker Nginx System Resource Availability (normalized) Unikraft Nginx System Resource Availability (normalized)
—— RAM availability
—— CPU availability

0 100 200 300 400 500 600 700 800 900 1000 0 100 200 300 400 500 600 700 80O 900 1000
Number of Sleeping Background Instances Number of Nginx Background Instances

[
°

o

@

°

©
o
~

wrk performance
—— SWAP availability
—— RAM availability
—— CPU availability

o
w

System Resource Availability
o
o

System Resource Availability

)
<

o

EY
o
15}

(a) Docker (b) Unikraft

Figure 4.5: System resource availability in the Nginx scalability experiment

testing Nginx. In addition, we can observe the use of swap memory in the Unikraft experiment.
The use of swap memory likely decreases the instance’s performance slightly, as the operating
system has to spend some time transferring the data from the main memory in the temporary
swap storage. On the other hand, the RAM usage in the Docker experiment remains stable

when running this experiment.

4.3.2 Redis

Secondly, as a data store, we decided to evaluate the performance of Redis. Redis stands for
Remote Dictionary Server, an open-source in-memory key-value data store. It is used exten-
sively in many large software systems due to its fast read (GET) and write (SET) operations.
In addition, most systems use Redis as a cache for more expensive database operations. The
same study conducted by Datadog suggests that Redis is the second most popular container
application, just after Nginx [S)]. Similarly to Nginx, Redis is also ported to Unikraft.

We used the open-source Redis benchmark (redis-benchmark) tool to evaluate the perfor-
mance of Redis launched on Docker and Unikraft. It is a simple tool that simulates many differ-
ent Redis commands [27]. The following benchmark configuration was used in our benchmark
analysis: 10 million requests running on 30 clients in 16 pipelines.

Figure presents the combined performance of a Redis server hosted on Unikraft and
Docker. Figure[4.6b| presents the normalized performance. The performance of Unikraft shows
some interesting patterns. Unikraft outperforms Docker early in the experiment, but its perfor-
mance drastically decreases after starting a few more instances.

Figures[d.7a)and . 7b|present the system resource usage of both systems. In the chart for the
Unikraft performance, we can see that apart from the decrease in the redis-benchmark perfor-

mance, the availability of CPU also gets decreases quickly. Furthermore, after 100 instances,

CHAPTER 4. ASSESSING SCALABILIY METHODOLOGY & RESULTS 32

Redis Performance on Docker and Unikraft Redis Performance on Docker and Unikraft (normalized to first run)
w12

Y 12 —— Docker Redis performance o
5= Unikraft Redis performance ©

o £ 10
Ecio £
= o
€8 s

[
L 9os TLos
v - Ny —— Docker Redis performance
T O © 5 .
© @ o6 EE 06 Unikraft Redis performance
Ec S5 <
J: o = e}
2= 04 g 04
8E 2
$ 702 Loz
°
9] g
4

0 100 200 300 400 500 600 700 800 0 100 200 300 400 500 600 700 800
Number of background Redis instances Number of background Redis instances
(a) Raw data analysis (b) Data normalized to first run

Figure 4.6: Combined Redis benchmark performance on Docker and Unikraft (higher is better)

Docker Redis System Resource Availability (normalized) Unikraft Redis System Resource Availability (normalized)

Redis performance
Z 110 —— SWAP availability
—— RAM availability
—— CPU availability

0.85
0.80

0 100 200 300 400 500 600 700 800 0 100 200 300 400 500 600 700 800
Number of Redis Background Instances Number of Redis Background Instances

Redis performance
—— SWAP availability
—— RAM availability
—— CPU availability

System Resource Availability
@
&

System Resource Availability

(a) Docker (b) Unikraft

Figure 4.7: System resource availability in the Redis scalability experiment

we can observe that the CPU availability is zero. This is because our machine has 104 cores,
and none can execute any other work. To understand the cause of this, we run a single Unikraft
image with a Redis server inside. We observed that the core to which we pin the Unikraft image
started gets 100% usage. When we start 100 instances, all the available cores get filled up, and
the CPU availability decreases to zero. We reported this issue to the Unikraft community, and
it was fixed in the newer Unikraft version, the v0.11 release [36].

On the other hand, Docker’s performance with Redis remains stable throughout the exper-
iment. Docker is an older system, and its popularity has been growing ever since. Therefore,
much engineering effort has been put into optimizing its performance and stability [14, 29].

Network applications are critical; optimizing and understanding their performance is cru-
cial for high-performance computing. However, this type of application often requires some
form of permanent storage. For example, most websites need to store user details in some
form of a database. Therefore, to understand the performance impact of using lightweight

virtualization systems, we explore storage-intensive applications in the next section.

CHAPTER 4. ASSESSING SCALABILIY METHODOLOGY & RESULTS 33

4.4 Storage Intensive Applications

Cloud storage is a service cloud providers offer to store data permanently without managing
hardware devices. As a result, cloud storage gives users better scalability, flexibility, and secu-
rity. However, one of the essential features of cloud storage is redundancy. Providers replicate
the same data on multiple machines and sometimes even multiple disks on the same device to
ensure no data is lost. Such storage services are essential for many applications which rely on
them. Cloud storages typically offer storing data in a database or a virtual file system, making
them a good choice for many cloud consumers. Motivated by the importance of cloud stor-
age and its popularity over the last few years, we explore the performance of storage-intensive
applications on a larger scale below.

Storage-intensive application access the hardware storage device through a standard system
call interface. These applications make use of the file systems on the operating systems. In
chapter 5] we explore file systems on a lower level in more detail.

Similarly to the experiments performed above, we wanted to evaluate the performance of
Docker and Unikraft in a realistic scenario. One of the most common uses of cloud storage is
database storage. Therefore, we decided to evaluate the storage scalability performance using
a database benchmark. SQLite was the perfect choice for our experiments. It has a minimal
design, can be compiled quickly, and supports all standard SQL functionalities [10]].

Unlike network-intensive applications we discussed above, which have many standard bench-
marking tools, there is no common SQL benchmark tool. Therefore, to provide consistency
with other benchmark analyses, we used a benchmark designed by the Unikraft community,
already used to evaluate the performance of SQLite ported on Unikraft as a single instance
running. Unikraft is an open-source project, and they have open-sourced all the code for their
benchmarks. In particular, for this benchmark, it is a simple C program that executes 60000
SQL queries that insert new rows in a table [32]. In addition, we also ported this benchmark to
run it inside a Docker container.

Figure {4.8a] presents the performance of both Docker and Unikraft on an SQLite bench-
mark. We observe that Unikraft outperforms Docker significantly in this experiment. The
performance difference is because Unikraft runs as a separate virtual machine, and all system
calls executed by the benchmark directly go to the underlying hardware. Furthermore, Unikraft
is an unikernel VM that does not waste resources on switching between kernel and user modes.
On the other hand, Docker containers spend many computational resources as each system call
has to go through the underlying operating system before accessing the hardware.

In Figure 4.8b] we can observe the normalized change in the benchmark time. The bench-

mark times of both Unikraft and Docker vary by around 3% from the first run. Overall, the

CHAPTER 4. ASSESSING SCALABILIY METHODOLOGY & RESULTS 34

SQLite Performance on Docker and Unikraft SQLite Performance on Docker and Unikraft (normalized to first run)
) @
é 28 2 104 —— DockerSQLite performance
g e \M\/\NAI\/"N\/"\"\/-V\’WVW g Unikraft SQLite performance
0 o
2.4 & 1.02 /\
Y PTRY IWAEAVIY
022 : V N ‘j\/\/ V’\/ v
2 —— Docker SQLite performance L 100
E 20 Unikraft SQLite performance §
518 5 0.98
21
B4 g 0.96
- =
g 1.2 2
0 100 200 300 400 500 600 700 800 900 1000 0 100 200 300 400 500 600 700 800 900 1000
Number of background sleeping instances Number of background sleeping instances
(a) Raw data analysis (b) Data normalized to first run

Figure 4.8: Combined SQLite benchmark performance on Docker and Unikraft (lower is better)

benchmark times remain stable even though we increase the load to the virtualization systems

by launching 1000 instances.

Docker SQLite System Resource Availability (normalized) Unikraft SQLite System Resource Availability (normalized)

i
o

H
=3
=3

o

©

«
o
@

SQLite performance
—— SWAP availability
—— RAM availability
—— CPU availability

o
©
=3

o

o

o
o
@

0.4 SQLite performance
—— SWAP availability
—— RAM availability

—— CPU availability

o
@
S

System Resource Availability
o
o

System Resource Availability

o
o
@

0 100 200 300 400 500 600 700 800 900 1000 0 100 200 300 400 500 600 700 800 900 1000
Number of Sleeping Background Instances Number of Sleeping Background Instances
(a) Docker (b) Unikraft

Figure 4.9: System resource availability in the SQLite scalability experiment

To understand the change in performance in more detail, we need to look at the system
resource availability. Therefore, we explore the system resource availabilities in Figures
and [4.95] For example, in Figure [#.9b] we notice that the RAM becomes full at around 800
Unikraft instances, and the performance slightly reduces after this. However, this degradation is
minor, only at about 4%. On the other hand, in Figure we do not notice any performance
degradation for Docker. Docker’s performance remains stable as this experiment only uses
around 30% of the available RAM. Therefore, the benchmark still has access to all system

resources.

Chapter 5

Performance Isolation Methodology &
Results

Performance isolation is the capability of the operating system or hypervisor to reasonably
isolate the resources between all the entities trying to use them. Performance isolation in cloud
computing refers to the responsibility of the cloud provider and the machine kernel to isolate
the different systems’ performance effects on each other. For example, if one misbehaving
user starts a container that actively abuses the hardware resources, simultaneously running
containers should not see any slowdown because of the misbehaving user.

Performance isolation is well-studied for both containers [28]] and virtual machines [18]]. In
this report, we extend existing studies and compare the performance isolation across containers

and unikernels.

5.1 Benchmark Overview

Performance isolation studies typically involve two-step measurement:
1. An uninterrupted application benchmark is run, and performance is recorded.

2. An additional misbehaving instance is run in the background on the same hardware re-

sources.

3. The application benchmark is rerun, now running together with the misbehaving in-

stance.

The performance of the interrupted application is also recorded and analyzed compared to

the uninterrupted performance. The percentage ratio between the interrupted and uninterrupted

35

CHAPTER 5. PERFORMANCE ISOLATION METHODOLOGY & RESULTS 36

performance is known as a slowdown measure.

In our experiments, we also make use of the described model. In addition, we suggest
an alternative model for evaluating performance isolation experiments to generalize our work.
Namely, we propose a general model where we have two instances participating in each exper-

iment:

1. Application instance: running a specific program. This program might be a web server,

data server, or a simple program executing some work.

2. Misbehaving instance: program designed to intentionally misuse the operating systems

resource and slow down the application instance.

Later in the text, we sometimes refer to the application instance as a worker and to the
misbehaving instance as an attacker. Using this model, we abstract away the logic of running
performance isolation experiments described above. Instead, we can focus on designing new
performance attackers and studying their effects on the workers.

To avoid missing any information from the complete data, we do not generalize each bench-
mark to a single number representing the slowdown but present the observed data, including
the average and the standard deviation in the data. Some authors use the Equation to de-
scribe the slowdown [41]]. Unfortunately, this equation fails to capture the difference between

two possible types of benchmarks:

* Benchmarks where a smaller value indicates better performance, for example, bench-

marks that return a time value required to complete.

* Benchmarks where a smaller value indicates reduced performance. Such as benchmarks

that return a number of requests per second.

Furthermore, the equation ignores any deviation in the collected performances. Meanwhile,
capturing the standard deviation in the observed data is essential, as it allows us to reason

about the observed behaviors confidently.

performance

Slow Down = (1 — mis"eha““g) -100% (5.1)

performance;,qejine

Once we establish the method for designing and evaluating performance isolation experi-
ments, we can start analyzing different types of attackers and their effects on various applica-

tions.

CHAPTER 5. PERFORMANCE ISOLATION METHODOLOGY & RESULTS 37

5.2 CPU and Memory Intensive Attackers

One of the primary resources the operating system controls are the CPU and memory resources.
Much engineering effort has been put into isolating the CPU and memory between virtual
instances fairly and efficiently. Moreover, the effect of CPU and intensive programs has been
studied in detail [39, 6. However, most existing studies only measure the performance of one
type of virtualization system and do not compare the performance across different types of
systems.

This section analyzes the first type of performance attackers, the CPU and memory attack-
ers. We start by looking at two well-known high-level application workers, Nginx and Redis.
We then extend our analysis also to include the SQLite worker benchmark.

Designing a CPU-intensive attacker is a relatively straightforward process. Our experi-
ments used a program that checks whether a number is a prime number for each value between
1 and 1 billion. This program involves many arithmetic operations, such as division, modulo,
and branching. Running this program on only one CPU core always resulted in 100% CPU
usage, which confirmed it was a good attacker for our studies.

On the other hand, designing a memory-intensive attacker is slightly more complicated.
Therefore, to ensure reliable results, we adapted STREAM, a standardized memory benchmark,
as an attacker. STREAM is a simple benchmark program that computes the memory bandwidth
in MB/s [20, [19]. It was written in 1995, but it was modified several times through the years
to adapt to newer trends in computing. It consists of four different vector operations: copy,
scale, sum, and triad, which are all computationally simple operations but put high stress on
the memory system.

Furthermore, we were not interested in the outputs STREAM produces for our system, as
this is irrelevant to our study. Instead, we adapted the operations STREAM uses to stress the
memory as a memory-intensive attack. Finally, we ported STREAM to Unikraft and Docker
and used it in our experiments.

Once we create the CPU and Memory intensive attackers, we can observe the difference in

the performance when the instance runs on its own and when it runs attacked.

5.2.1 Nginx

We first run the Nginx server virtualized in Unikraft or Docker system in our setup. To ensure
we stress this instance, we pin it to a specific core in the processor. We then benchmark its
performance using wrk benchmark. The performance we get serves as a baseline performance

of the Nginx server. Then, the attacker is launched alongside the server, pinned on the same

CHAPTER 5. PERFORMANCE ISOLATION METHODOLOGY & RESULTS 38

thread. The performance is again observed, and the slowdown is noted down. Finally, in the
third run, we run the attacker on the other hyper thread belonging to the same core using the

same process. We use the same wrk and Nginx configurations from chapter 4}

Performance isolation on Nginx with CPU attack Performance isolation on Nginx with memory attack

| | 1.09 | |

-
o

o
=]
e
o

o
=3
e
o

o
'S
e
=

Requests per second
(normalized to first run)
Requests per second
(normalized to first run)

0z Single run 0.2 Single run
’ %z Same thread attack ' we. Same thread attack
2% Same core attack % Same core attack
0.0 ¢ A A AN 1 |7 : 0.0 ¢ A A AN 1 v :
Unikraft Docker Unikraft Docker
(a) CPU attack results (b) Memory attack results

Figure 5.1: Performance Isolation Results of Nginx on Docker and Unikraft (higher is better)

Figures [5.1a] and [5.1b] show the normalized wrk benchmark performances for CPU- and
memory-intensive applications. When using these types of attackers, Unikraft provides better
isolation, and the slowdown is smaller than Docker when the attacker is pinned to the same
thread as the application. On the other hand, when the attacker is pinned to the other hyper
thread in the same core, Docker slightly outperforms Unikraft. Finally, there is no significant

difference in the results of the CPU and memory attacks in this experiment.

5.2.2 Redis

The same procedure for benchmarking the performance isolation of Redis is repeated too.
In figures [5.2a) and [5.2b] we present the performance of Redis under the CPU and memory-
intensive attackers.

Firstly, when the attacker is run on the same thread as the application, the slowdown of
Unikraft is slightly smaller than the slowdown of Docker. However, this difference is only
2.5% for the CPU attacker and 5.8% for the memory attacker and is insignificant. On the other
hand, when the attacker is run on the same core but on a different thread, Docker outperforms
Unikraft. Furthermore, the attacker running on the other thread does not give any slowdown to
the main application container. Such behavior is an excellent performance isolation character-
istic of Docker. Redis is a popular application, and unique engineering effort has likely been

put toward optimizing its performance and handling such performance attackers.

CHAPTER 5. PERFORMANCE ISOLATION METHODOLOGY & RESULTS 39

Performance isolation on Redis with CPU attack

1.04

o o =1
S (=] (o]

Requests per second
(normalized to first run)

o
L]

0.0

7
'Y

Single run
Same thread attack
Same core attack

A A A 1 |7

Unikraft

Docker

Requests per second
(normalized to first run)

o
[N]

Performance isolation on Redis with memory attack

1.0

e
o

e
=

o
=

0.0

/2
W5

A A A 1 7

Single run
Same thread attack
Same core attack

Unikraft

Docker

(a) CPU attack results (b) Memory attack results

Figure 5.2: Performance Isolation Results of Redis on Docker and Unikraft (higher is better)

5.2.3 SQLite

Performance isolation on SQLite with CPU attack Performance isolation on SQLite with memory attac
2.00

- —
n ~
=1 v

-
]
v

Time in seconds
(normalized to first run)
o ©o o =
N w ~I o
w (=] w o

o
o
=]

|

i
e

1

Single run
Same thread attack

Same core attack
1 L I

Unikraft

Docker

Time in seconds
(normalized to first run)

-
~
wn

-
n
o

—
[)
wn

=
o
S

o
~
v

o
n
o

o
[¥]
w

e
o
IS}

7z
s

Single run
Same thread attack

Same core attack
| L ¥

Unikraft

Docker

(a) CPU attack results (b) Memory attack results

Figure 5.3: Performance Isolation Results of SQLite on Docker and Unikraft (lower is better)

SQLite is a storage-intensive application, and it heavily depends on fast memory. One of
the essential storage parts in computer devices is the cache itself. Since the cache is organized
in a topology, different cache levels are shared with different chips, and we add another level
at which we examine the performance isolation for SQLite. The new level of analysis we run
places the attacker on the same physical core but on a neighboring thread. The two threads
running on the same core share the same cache lines, among many other hardware resources,
such as memory buses.

Figures[5.3aand[5.3b|present the performance of SQLite under CPU and memory-intensive
attacks. Firstly, Unikraft outperforms Docker significantly on the test when the application and

CHAPTER 5. PERFORMANCE ISOLATION METHODOLOGY & RESULTS 40

attacker are placed on the same thread. On the other hand, when the attacker is run on the same
core but a different thread, Docker performs only slightly better. To understand these results,
we must look more closely at file systems and other types of attackers. Therefore, we explore

file systems in more detail in the next section.

5.3 File System Attackers

Another essential feature of the operating system is the file system. A file is typically a col-
lection of some data. On a lower level, we can view files as a list of bytes representing some
information. However, Unix-based operating systems were built with the “Everything is a
file.” philosophy in mind. Since files are the base building blocks of all other functionality in
the operating systems, maintaining an efficient file system is crucial.

The file system typically refers to the operating system’s data structures and functions to
control file creation, modification, and deletion. In addition, these data structures store meta-
data parameters, such as file name, size, type, permissions, and owner.

Containers rely on the file system managed by the host operating system. Therefore, every
container on one host uses the same file system and data structures. Sharing the same file
system is a well-known issue of containers, and both the performance and security impacts
have often been analyzed [[15, 41]. On the other hand, each virtual machine and unikernels
uses an entirely different file system. As a result, each guest operating system stores different
data structures for all file operations. Such separation allows for better isolation, both in terms
of performance and security [13]. However, even though the file systems of unikernels are
separated, they still compete for the same hardware resources, and a misbehaving instance
might still impact the performance of a well-behaving instance.

Motivated by the importance of file systems in operating systems, we explore different ways
of attacking a system running file storage-intensive applications. Our file system experiments
use an SQLite benchmark as a well-behaving instance. Furthermore, we use the same bench-
mark to assess the scalability of storage-intensive applications in Chapter 4 This benchmark
measures the time to execute 60000 insert SQL database queries.

Operations with files often involve accessing the disk, and disk storage is a well-known
bottleneck in computer performance. We use a temporary in-memory file system to avoid the
overhead of accessing the disk in our analysis. Unikraft supports RamFS (short for Random
Access Memory File System), a simple file system that stores both the file system data struc-
tures and file contents in the main memory. Docker supports TmpFS (short for Temporary File

System). TmpFS is very similar to RamFS, a simple file system that stores the data in the main

CHAPTER 5. PERFORMANCE ISOLATION METHODOLOGY & RESULTS 41

memory instead of storing it on a permanent disk. TmpFS is a more recent version of an in-
memory file system, and it supports more advanced features like setting a storage limit. Still,
the main functionalities in both TmpFS and RamFS are the same.

In this subsection, we will explore five different file system attackers. Each of the five

attackers runs an infinite loop in which a different system call is executed:
* open () and close () system calls
* read() system call
* write () system call

* stat () system call

fork () system call

Figures [5.4a] [5.4b] and [5.4¢| present the benchmark slowdowns with the open (), stat (),

and fork () attackers. We observe that the slowdowns for both Unikraft and Docker are similar

to the CPU and memory attacks from the subsection [5.2.3]above. However, these system calls
are well-engineered, and containers and virtual machines are optimized to handle such attackers
with minimal influence.

Figures [5.4d| and present the benchmark slowdowns with the read() and write ()
attackers. For Docker, we notice similar behavior to the other attackers, without the new at-
tackers significantly affecting the performance. However, for Unikraft, we can observe a more
significant slowdown for the write () system call attack. The slowdown difference happens
because the other system calls make great use of the cache available in the processor. On the
other hand, the write () system call cannot make as extensive use of the cache as the other sys-
tem calls, as it needs to write to the main memory frequently. Therefore, we speculate that the
significant slowdown for Unikraft write () attack happens because both the application and
the attacker are accessing the memory in parallel. Furthermore, the write system call is much
more memory-intensive than the others. Table [5.1] presents the slowdowns of all the system
call attackers discussed above for both Docker and Unikraft.

Although these experiments gave us good insights into the ability of performance isolation
of Docker and Unikraft, we did not observe any significant bottlenecks by running the appli-
cation and the attacker on the same thread or the same core. Therefore, we design a larger
performance isolation experiment to put more stress on the systems. Namely, on the same pro-
cessor, instead of launching the attacker on just one core, we launch an attacker on every hyper

thread the processor has, apart from one core that we use for the application benchmark. By

CHAPTER 5. PERFORMANCE ISOLATION METHODOLOGY & RESULTS 42

Time in seconds
(normalized to first run)

Time in seconds
(normalized to first run)
5

Performance isolation on SQLite with open() attack

2.00

1.75

1.50

1.25

1.00

0.75

0.50

0.25

0.00

2.00

1.75

1.50

1.25

0.75

0.50

0.25

0.00

i Single run

#z#% Same thread attack

%252 Same core attack
1 ¥

Performance isolation on SQLite with stat() attack

1.75

1.50 1

1.251

1.00

0.754

0.50

Time in seconds
(normalized to first run)

0.25

Unikraft Doéker

(a) open() attack results

Performance isolation on SQLite with fork() attack

0.00 -

i Single run

%% Same thread attack

A% Same core attack
1 ¥

i Single run
v Same thread attack

A2 Same core attack
1 ¥

Unikraft

Doéker

(b) stat() attack results

R 0aPerformance isolation on SQLite with read() attack

1.751

1.50 1

1.25

1.00

0.754

0.501

Time in seconds
(normalized to first run)

0.25 1

Unikraft Doéker

(c) fork() attack results

0.00 -

i Single run
v Same thread attack

A5 Same core attack
1 r

Unikraft

Doéker

(d) read() attack results

Performance isolation on SQLite with write() attack

= = g
o wn =}

Time in seconds
(normalized to first run)
o
n

0.0-

e Single run

%y Same thread attack

2% Same core attack
L 4

Unikraft

Doclker

(e) write() attack results

Figure 5.4: Performance Isolation Results of SQLite on Docker and Unikraft with different
system call attacks (lower is better)

CHAPTER 5. PERFORMANCE ISOLATION METHODOLOGY & RESULTS 43

System call stressed | Thread slowdown | Core slowdown
open (Unikraft) 30.05% 43.15%
open (Docker) 93.72% 54.16%
stat (Unikraft) 30.53% 56.36%
stat (Docker) 89.24% 51.08%

write (Unikraft) 28.7% 109.02%
write (Docker) 89.73% 41.44%
read (Unikraft) 30.2% 55.98%
read (Docker) 89.56% 42.41%
fork (Unikraft) 42.2% 52.45%
fork (Docker) 93.37% 52.82%

Table 5.1: Slowdowns for each SQLite system call attack

having a whole core for the benchmark application, we ensure the benchmark has full access
to the cache and computing resources available at this core. However, all the attackers running
on the processor share the primary L3 cache and the other shared memory resources.

Figures [5.5a and [5.5b| present the large-scale performance isolation experiment results for
both Docker and Unikraft. Firstly, for Unikraft, we observe a significant slowdown between
10% and 50%. This slowdown is likely because all the attackers access the memory in parallel,
and the memory becomes the device’s bottleneck. Secondly, we observe a much more signifi-
cant application slowdown for Docker. We can notice this for the open () and stat () system
calls, giving around an 800% slowdown. The open () and stat () system calls are meant to
be executed infrequently. Typical use cases for these system calls involve opening one file and
performing many operations instead of constantly opening and closing the same file.

Misbehaving containers can often give such significant slowdowns. This has been well-
researched and analyzed. Containers share the same host operating system. Therefore all
containers share the same resources the OS kernel manages. These resources are limited, and
executing one system call in many containers is an easy way to consume all the available
resources [13]].

Furthermore, all containers share exclusive resources, such as lock mechanisms required
for all operating system functionalities. Misbehaving containers can easily stress both consum-
able and exclusive resources. Significant work has been done to improve container isolation
[13]. However, such improvement requires significant engineering effort and analysis for every
possible misbehaving container type. On the other hand, unikernels are entirely isolated by
design, and most of their slowdowns happen because of physical limitations, such as the CPU

or memory being unavailable.

CHAPTER 5. PERFORMANCE ISOLATION METHODOLOGY & RESULTS 44

Large Scale Experiment on SQLite (Docker)

Benchmark time (in seconds)
= = = =
=9 [=)] (o] o (3%} F= [=2]

[\¥]

] Baseline CPU memory open() stat() write() read() fork()

(a) Docker Performance Isolation Results

Large Scale Experiment on SQLite (Unikraft)

Jr++*—

0.8 —

0.6 1

0.4 1

Benchmark time (in seconds)

Baséline CF"U menlwory opén{) sta;t() wri:ce(} rea'd-:) forlk(}

(b) Unikraft Performance Isolation Results

Figure 5.5: Large Scale Performance Isolation Experiment of Docker and Unikraft (lower is
better)

Chapter 6

Conclusions, Limitations and Future
Works

6.1 Conclusions

Docker containers are inherently different from Unikraft virtual machines. Due to the signifi-
cant design differences, the performance characteristics of Docker and Unikraft differ signifi-
cantly.

In the scalability benchmarks, both systems perform better in different scenarios. For exam-
ple, Unikraft outperforms Docker in the boot time and storage-intensive benchmarks. On the
other hand, Docker performs better than Unikraft in the network-intensive benchmarks. The
experiments we have designed also test the hypervisor QEMU. We observe that this hypervisor
greedily uses memory and starts using swap memory after around 800 Unikraft instances. This
heavily reduces Unikraft’s performance in all benchmarks we have performed.

In the performance isolation benchmarks, we observe several different performance pat-
terns. Unikraft outperforms Docker when the attacker runs on the same thread as the user
application. However, Docker outperforms Unikraft when the attacker runs on the same core
but a different hyper thread as the user application. Such behavior likely happens because
Docker containers share more resources than Unikraft virtual machines, completely isolated
by design. The initial performance isolation experiment did not stress the system enough, so
we created larger-scale experiments. These experiments show the potential harms of using
containers. Attackers using the open () and stat () system call slow down the user application
by more than 800% on Docker. This slowdown suggests possible lock congestion, as these
system calls heavily use locks to ensure only one process reads a file. Since all locks are shared

between containers, lock congestions often happen.

45

CHAPTER 6. CONCLUSIONS, LIMITATIONS AND FUTURE WORKS 46

In conclusion, we identified different performance bottlenecks in both Docker and Unikraft.
We also identified scenarios in which the systems shine with their performance. Finally, as
Unikraft is still in active development, we helped the community by identifying a list of issues.
We list the issues discovered in section in the Appendix.

6.2 Challenges and Limitations

This project did not have a strict plan from the beginning. Since this project involved design-
ing and trying new experiments, predicting how much time each would take was impossible.
Furthermore, some of the scalability experiments took very long to execute. For example, com-
pleting the Redis on the Unikraft scalability benchmark took over 8 hours. Such slow execution
is because of the issue in Unikraft’s Redis library in v0.10.

Initially, the only focus of the project was assessing scalability. However, around the start
of the second semester, we decided also to include performance isolation experiments, as these
types of experiments are closely related and help us explore some characteristics of the systems
in more detail.

Various difficulties were met while completing the work on this project. In the first part of
the project, assessing scalability, the main issues focused on managing thousands of instances
started on the same machine. In addition, there were often network issues connecting the
QEMU hypervisor to the operating system network bridge. Furthermore, even though both
systems are designed to perform well at large scale, they are designed to be set up for only a few
instances. For example, Docker has a limit of 1000 instances to be connected to one network
bridge. Therefore, we decided to limit all our scalability experiments to 1000 instances since
1000 instances is already a large enough number and much larger than the available computing
units on the machine.

Minor issues like the ones described above were often easy and quick to resolve. However,
there were often more significant issues that needed careful decisions. For example, since
Unikraft is a recently developed tool, its support for user applications could be improved. In
our search for a candidate for evaluating a storage-intensive application, we were interested
in more advanced database tools, like MySQL or PostgreSQL. However, these databases must
still be ported to Unikraft, and only SQLite is supported.

Furthermore, as Unikraft is still actively developing, its main features often change, and
new versions constantly emerge. Therefore, we always tried to use the newest version. How-
ever, this was only sometimes possible, as the newest versions had issues stopping us from

progressing.

CHAPTER 6. CONCLUSIONS, LIMITATIONS AND FUTURE WORKS 47

Finally, many experiment ideas did not give any relevant results and were ignored. One
such example is a parallel benchmark for testing many Redis instances simultaneously. We had
to launch more than 100 simultaneous connections to get relevant results for the systems, while

Redis ran on Unikraft breaks after starting more than 57 connections [3]].

6.3 Future Works

The performance evaluation of virtualization systems has much potential for future research.
Firstly, extending the project with more applications, such as more relevant database tools,
would be suitable once they are ported and available in Unikraft. Secondly, modifying the
benchmark CLI to test any unikernel, hypervisor, or container type independently would be
highly beneficial for identifying issues and bottlenecks in new and different systems. Finally,
going deeper into the results and identifying the root causes for some performance bottlenecks
would be a significant step toward creating better virtualization systems. For example, such
work might include exploring why the Docker boot time increases as we boot many instances

or why the Unikraft Nginx performance decreases as we boot many instances.

Bibliography

[1] A. B. Bondi. Characteristics of scalability and their impact on performance. In Proceed-
ings of the 2nd international workshop on Software and performance, pages 195-203,
2000.

[2] S. Boyd-Wickizer, A. T. Clements, Y. Mao, A. Pesterev, M. F. Kaashoek, R. T. Morris,
N. Zeldovich, et al. An analysis of linux scalability to many cores. In OSDI, volume 10,
pages 8693, 2010.

[3] J. Cameron. System breaks at 58 connections. 57 connections produces good results.
https://github.com/unikraft/app-redis/issues/9, 2022.

[4] V. G. da Silva, M. Kirikova, and G. Alksnis. Containers for virtualization: An overview.
Applied Computer Systems, 23(1):21-27, 2018.

[5] Datadog. 9 insights on real-world container use. https://www.datadoghg.com/
container—-report/#6, 2022.

[6] T. Deshane, D. Dimatos, G. Hamilton, M. Hapuarachchi, W. Hu, M. McCabe, and J. N.
Matthews. Performance isolation of a misbehaving virtual machine with xen, vmware
and solaris containers. submitted to USENIX, 2006.

[7] W. Glozer. wrk: Modern http benchmarking tool. https://github.com/wg/wrk, 2021.

[8] C.Gong,J. Liu, Q. Zhang, H. Chen, and Z. Gong. The characteristics of cloud computing.
In 2010 39th International Conference on Parallel Processing Workshops, pages 275—
279, 2010.

[9] D. Gupta, L. Cherkasova, R. Gardner, and A. Vahdat. Enforcing performance isolation
across virtual machines in xen. In Middleware 2006: ACM/IFIP/USENIX 7th Interna-
tional Middleware Conference, Melbourne, Australia, November 27-December 1, 2006.
Proceedings 7, pages 342—-362. Springer, 2006.

48

https://github.com/unikraft/app-redis/issues/9
https://www.datadoghq.com/container-report/#6
https://www.datadoghq.com/container-report/#6
https://github.com/wg/wrk

BIBLIOGRAPHY 49

[10]

[11]

[12]

[13]

[14]

[15]

[16]

[17]

[18]

R. D. Hipp. SQLite, 2023.

S. v. Kalken. What are namespaces and cgroups, and how do they work? https://www.

nginx.com/blog/what-are-namespaces-cgroups—how-do-they-work/, 2021.

S. Kashyap, C. Min, and T. Kim. Opportunistic spinlocks: Achieving virtual machine
scalability in the clouds. ACM SIGOPS Operating Systems Review, 50(1):9-16, 2016.

S. Kuenzer, V.-A. Badoiu, H. Lefeuvre, S. Santhanam, A. Jung, G. Gain, C. Soldani,
C. Lupu, S. Teodorescu, C. Raducanu, et al. Unikraft: fast, specialized unikernels the

easy way. In Proceedings of the Sixteenth European Conference on Computer Systems,
pages 376-394, 2021.

Y. Li, J. Zhang, C. Jiang, J. Wan, and Z. Ren. Pine: Optimizing performance isolation in
container environments. IEEFE Access, 7:30410-30422, 2019.

X. Lin, L. Lei, Y. Wang, J. Jing, K. Sun, and Q. Zhou. A measurement study on linux
container security: Attacks and countermeasures. In Proceedings of the 34th Annual
Computer Security Applications Conference, ACSAC ’18, page 418—429, New York, NY,
USA, 2018. Association for Computing Machinery.

A. Madhavapeddy, R. Mortier, C. Rotsos, D. Scott, B. Singh, T. Gazagnaire, S. Smith,
S. Hand, and J. Crowcroft. Unikernels: Library operating systems for the cloud. In Pro-
ceedings of the Eighteenth International Conference on Architectural Support for Pro-
gramming Languages and Operating Systems, ASPLOS *13, page 461-472, New York,
NY, USA, 2013. Association for Computing Machinery.

A. Madhavapeddy, R. Mortier, C. Rotsos, D. Scott, B. Singh, T. Gazagnaire, S. Smith,
S. Hand, and J. Crowcroft. Unikernels: Library operating systems for the cloud. In Pro-
ceedings of the Eighteenth International Conference on Architectural Support for Pro-
gramming Languages and Operating Systems, ASPLOS *13, page 461-472, New York,
NY, USA, 2013. Association for Computing Machinery.

J. N. Matthews, W. Hu, M. Hapuarachchi, T. Deshane, D. Dimatos, G. Hamilton, M. Mc-
Cabe, and J. Owens. Quantifying the performance isolation properties of virtualization

systems. In Proceedings of the 2007 workshop on Experimental computer science, pages
6—es, 2007.

https://www.nginx.com/blog/what-are-namespaces-cgroups-how-do-they-work/
https://www.nginx.com/blog/what-are-namespaces-cgroups-how-do-they-work/

BIBLIOGRAPHY 50

[19] J. D. McCalpin. Stream: Sustainable memory bandwidth in high performance comput-
ers. Technical report, University of Virginia, Charlottesville, Virginia, 1991-2007. A

continually updated technical report. http://www.cs.virginia.edu/stream/.

[20] J. D. McCalpin. Memory bandwidth and machine balance in current high performance
computers. [IEEE Computer Society Technical Committee on Computer Architecture
(TCCA) Newsletter, pages 19-25, Dec. 1995.

[21] D. Merkel. Docker: lightweight linux containers for consistent development and deploy-
ment. Linux journal, 2014(239):2, 2014.

[22] Nginx. Configuring nginx as a mail proxy server. https://docs.nginx.com/nginx/

admin-guide/mail-proxy/mail-proxy/, 2023.

[23] Nginx. Http load balancing. |https://docs.nginx.com/nginx/admin-qguide/
load-balancer/http-load-balancer/, 2023.

[24] V. Nitu, P. Olivier, A. Tchana, D. Chiba, A. Barbalace, D. Hagimont, and B. Ravindran.
Swift birth and quick death: Enabling fast parallel guest boot and destruction in the xen
hypervisor. ACM SIGPLAN Notices, 52(7):1-14, 2017.

[25] P. Olivier. Chrono. https://github.com/olivierpierre/chrono, 2016.

[26] B. B. Rad, H. J. Bhatti, and M. Ahmadi. An introduction to docker and analysis of its
performance. International Journal of Computer Science and Network Security (IJCSNS),
17(3):228, 2017.

[27] Redis. Redis benchmark. |https://redis.io/docs/management/optimization/
benchmarks/, 2023.

[28] B. Ruan, H. Huang, S. Wu, and H. Jin. A performance study of containers in cloud
environment. In Advances in Services Computing: 10th Asia-Pacific Services Computing
Conference, APSCC 2016, Zhangjiajie, China, November 16-18, 2016, Proceedings 10,
pages 343-356. Springer, 2016.

[29] Z. Shen, Z. Sun, G.-E. Sela, E. Bagdasaryan, C. Delimitrou, R. Van Renesse, and
H. Weatherspoon. X-containers: Breaking down barriers to improve performance and
isolation of cloud-native containers. In Proceedings of the Twenty-Fourth International
Conference on Architectural Support for Programming Languages and Operating Sys-
tems, ASPLOS ’19, page 121-135, New York, NY, USA, 2019. Association for Comput-
ing Machinery.

https://docs.nginx.com/nginx/admin-guide/mail-proxy/mail-proxy/
https://docs.nginx.com/nginx/admin-guide/mail-proxy/mail-proxy/
https://docs.nginx.com/nginx/admin-guide/load-balancer/http-load-balancer/
https://docs.nginx.com/nginx/admin-guide/load-balancer/http-load-balancer/
https://github.com/olivierpierre/chrono
https://redis.io/docs/management/optimization/benchmarks/
https://redis.io/docs/management/optimization/benchmarks/

BIBLIOGRAPHY 51

[30] Statista. Worldwide market share of leading cloud infrasturcture

service providers. https://www.statista.com/chart/18819/

worldwide-market-share-of-leading-cloud-infrastructure-service-providers/

last accessed 2 Apr. 2023, 2022.

[31] Z. Tavaria. Now the world’s #I web server, nginx looks for-
ward to an even brighter future. https://www.nginx.com/blog/

now-worlds—-1-web-server-nginx-looks-forward-to-even-brighter-future/,

2023.

[32] Unikraft. Unikraft eurosys’21 artifacts. https://github.com/unikraft/
eurosys2l-artifacts, 2021.

[33] Unikraft. Unikraft “hello world” application. https://github.com/unikraft/
app-helloworld, 2023.

[34] A. Velichkovski. Assessing scalability and performance isolation github repository.

https://github.com/andrejvelichkovski/assessing-scalability, 2022.

[35] A. Velichkovski. Nginx stops processing requests on new version of uk. https://

github.com/unikraft/app-nginx/issues/9, 2022.

[36] A. Velichkovski. Redis on unikraft uses 100% of the cpu available. https://github.
com/unikraft/app-redis/issues/12, 2022.

[37] A. Velichkovski. Unikraft redis doesn’t start with kraft run, works correctly when started
with gemu. https://github.com/unikraft/lib-redis/issues/8, 2022.

[38] A. Velichkovski. Unikraft redis stops processing requests (crashes) on increased load.
https://github.com/unikraft/lib-redis/issues/9, 2022.

[39] B. Verghese, A. Gupta, and M. Rosenblum. Performance isolation: Sharing and isola-
tion in shared-memory multiprocessors. In Proceedings of the Eighth International Con-
ference on Architectural Support for Programming Languages and Operating Systems,
ASPLOS VIII, page 181-192, New York, NY, USA, 1998. Association for Computing
Machinery.

[40] VMWare. What is a bare metal hypervisor? https://www.vmware.com/topics/
glossary/content/bare-metal-hypervisor.html, 2023.

https://www.statista.com/chart/18819/worldwide-market-share-of-leading-cloud-infrastructure-service-providers/
https://www.statista.com/chart/18819/worldwide-market-share-of-leading-cloud-infrastructure-service-providers/
https://www.nginx.com/blog/now-worlds-1-web-server-nginx-looks-forward-to-even-brighter-future/
https://www.nginx.com/blog/now-worlds-1-web-server-nginx-looks-forward-to-even-brighter-future/
https://github.com/unikraft/eurosys21-artifacts
https://github.com/unikraft/eurosys21-artifacts
https://github.com/unikraft/app-helloworld
https://github.com/unikraft/app-helloworld
https://github.com/andrejvelichkovski/assessing-scalability
https://github.com/unikraft/app-nginx/issues/9
https://github.com/unikraft/app-nginx/issues/9
https://github.com/unikraft/app-redis/issues/12
https://github.com/unikraft/app-redis/issues/12
https://github.com/unikraft/lib-redis/issues/8
https://github.com/unikraft/lib-redis/issues/9
https://www.vmware.com/topics/glossary/content/bare-metal-hypervisor.html
https://www.vmware.com/topics/glossary/content/bare-metal-hypervisor.html

BIBLIOGRAPHY 52

[41] K. Wang, S. Wu, K. Suo, Y. Liu, H. Huang, Z. Huang, and H. Jin. Characterizing and op-
timizing kernel resource isolation for containers. Future Generation Computer Systems,
141:218-229, 2023.

[42] X. Wang, J. Du, and H. Liu. Performance and isolation analysis of runc, gvisor and kata
containers runtimes. Cluster Computing, 25(2):1497-1513, 2022.

[43] M. G. Xavier, I. C. De Oliveira, F. D. Rossi, R. D. Dos Passos, K. J. Matteussi, and C. A.
De Rose. A performance isolation analysis of disk-intensive workloads on container-
based clouds. In 2015 23rd Euromicro International Conference on Parallel, Distributed,
and Network-Based Processing, pages 253-260. IEEE, 2015.

[44] X. Xu, F. Zhou, J. Wan, and Y. Jiang. Quantifying performance properties of virtual
machine. In 2008 International Symposium on Information Science and Engineering,
volume 1, pages 24-28, 2008.

Appendix A

Benchmark appendix

A.1 Experiment Code Names

Experiment code Experiment description

uk_boot Unikraft Boot Microbenchmark
d_boot Docker Boot Microbenchmark
uk_mem Unikraft Memory Usage Microbenchmark
d_mem Docker Memory Usage Microbenchmark
uk_ng_s Unikraft Nginx Scalability Benchmark
d_-ng_s Docker Nginx Scalability Benchmark
uk_re_s Unikraft Redis Scalability Benchmark
d_re_s Docker Redis Scalability Benchmark
uk_sqgl_s Unikraft SQLite Scalability Benchmark
d_sqgl_s Docker SQLite Scalability Benchmark
uk_nginx_perf_iso

Unikraft Nginx Performance Isolation Benchmark
Docker Nginx Performance Isolation Benchmark
Unikraft Redis Performance Isolation Benchmark
Docker Redis Performance Isolation Benchmark

Unikraft SQLite Performance Isolation Benchmark
Docker SQLite Performance Isolation Benchmark

d.nginx perf_iso
uk_redis_perf_iso
d_-redis_perf_iso
uk_sqglite_perf_iso
d_sglite_perf_iso

Table A.1: Code name for each benchmark experiment implemented

53

APPENDIX A. BENCHMARK APPENDIX 54

A.2 Issues identified in Unikraft

A.2.1 Redis on Unikraft uses 100% of the CPU available

This issue was identified as part of the Redis Unikraft scalability experiment. It was already
known to the authors of the Redis library for Unikraft. It is resolved in Unikraft vO.11 version
[36]].

A.2.2 Unikraft Redis stops processing requests (crashes) on increased
load

This issue was identified in Unikraft v0.11 version, when trying to switch to newer version for

the Performance Isolation experiments. It is resolved in Unikraft v0.12 version [38]].

A.2.3 Unikraft redis doesn’t start with kraft run, works correctly when

started with Qemu

This issue was identified while prototyping different performance isolation experiments [37].

A.2.4 Nginx stops processing requests on new version of UK

This issue was identified in the same time as the issue described in subsection The root
cause is the same in both issues, and it has been resolved in Unikraft v0.12 version [35]].

	Abstract
	Declaration
	Copyright
	Acknowledgements
	Introduction
	Motivation
	Project Aims
	Report Structure
	Literature Review

	Background
	Virtualization
	Containers
	Docker

	Unikernels
	Unikraft

	Benchmark Overview
	Infrastructure Configuration
	Benchmark Software
	Design Decisions
	Architecture
	Usage

	Benchmark Guidelines

	Assessing Scalabiliy Methodology & Results
	Benchmark Design Overview
	Microbenchmarks
	Boot Time Analysis
	Memory Usage Analysis

	Network Intensive Applications
	Nginx
	Redis

	Storage Intensive Applications

	Performance Isolation Methodology & Results
	Benchmark Overview
	CPU and Memory Intensive Attackers
	Nginx
	Redis
	SQLite

	File System Attackers

	Conclusions, Limitations and Future Works
	Conclusions
	Challenges and Limitations
	Future Works

	Bibliography
	Benchmark appendix
	Experiment Code Names
	Issues identified in Unikraft
	Redis on Unikraft uses 100% of the CPU available
	Unikraft Redis stops processing requests (crashes) on increased load
	Unikraft redis doesn't start with kraft run, works correctly when started with Qemu
	Nginx stops processing requests on new version of UK

