-
Notifications
You must be signed in to change notification settings - Fork 0
/
UKF.py
167 lines (130 loc) · 4.42 KB
/
UKF.py
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
import numpy as np
import math
import scipy.io
import matplotlib.pyplot as plt
mat_contents= scipy.io.loadmat('dataset1.mat')
accel = mat_contents['accel'][:,0]
gyro = mat_contents['gyro'][:,0]
u = mat_contents['u'][:,0]
t = np.arange(0,20.001,0.01)
# mat_contents = scipy.io.loadmat('biasedRunner.mat')
# accel = mat_contents['a_meas'][:,0]
# gyro = mat_contents['d_meas'][:,0]
# u = mat_contents['u'][:,0]
# t = np.arange(0,10.001,0.01)
n = 4
E = np.concatenate((math.sqrt(n)*np.eye(n),-math.sqrt(n)*np.eye(n)),axis = 1)
xHat = np.zeros((n,len(u)))
yBar = np.zeros((2,len(u)))
y = np.zeros((2,n*2))
P = .01 * np.eye(n)
Q = np.zeros((n,n))
Q[0,0] = .0000001
Q[1,1] = .0000001
Q[2,2] = .000001
Q[3,3] = .000001
# Q[3,3] = .000001
# Q[2,2] = .000001
R = .0001 * np.eye(2)
m1 = .6
m2 = 1.9
l = .38
la = .2
Ts = .01
def f(state,u):
# print state
th = state[0]
# print th
thDot = state[1]
# print thDot
thDotDot = ((9.81*(m1+m2)-m1*l*math.cos(th)*thDot**2)*math.sin(th)+math.cos(th)*u)/(l*(m1+m2-m1*math.cos(th)**2))
# print thDotDot
return np.array([th+thDot*Ts,thDot+thDotDot*Ts,state[2],state[3]])
def g(state,u):
th = state[0]
thDot = state[1]
a = (l-la)/l*((math.cos(th)-m1*l*math.cos(th)*thDot**2*math.sin(th))*u/(m1+m2-m1*math.cos(th)**2)+(m1+m2)*9.81*math.sin(th)/(m1+m2-m1*math.cos(th)**2))
return np.array([thDot+state[2],a+state[3]])
for k in xrange(len(u)-1):
#measurement update
U, s, V = np.linalg.svd(P, full_matrices=True)
M = np.dot(U,np.diag(np.sqrt(s)))
xTilde = np.dot(M,E)
xTilde += xHat[:,k:k+1]
for i in xrange(2*n):
y[:,i] = g(xTilde[:,i],u[k])
yBar[:,k] = np.mean(y,1)
PXY = 1.0/(2.0*n)*np.dot(xTilde - xHat[:,k:k+1],np.transpose(y - yBar[:,k:k+1]))
PY = 1.0/(2.0*n)*np.dot(y - yBar[:,k:k+1],np.transpose(y-yBar[:,k:k+1]))+R
K = np.dot(PXY,np.linalg.inv(PY))
yMeas = np.reshape(np.array([gyro[k],accel[k]]),(2,1))
xHat[:,k:k+1] = xHat[:,k:k+1] + np.dot(K,yMeas-yBar[:,k:k+1])
P = P - np.dot(K,np.transpose(PXY))
#time update
U, s, V = np.linalg.svd(P, full_matrices=True)
M = np.dot(U,np.diag(np.sqrt(s)))
xTilde = np.dot(M,E)
xTilde += xHat[:,k:k+1]
for i in xrange(2*n):
xTilde[:,i] = f(xTilde[:,i],u[k])
xHat[:,k+1] = np.mean(xTilde,1)
P = 1.0/(2.0*n)*np.dot(xTilde - xHat[:,k+1:k+2],np.transpose(xTilde - xHat[:,k+1:k+2])) + Q
# f, axarr = plt.subplots(4, sharex=True)
# axarr[0].plot(t,u)
# axarr[0].plot(t,xHat[0,:])
# # axarr[0].set_title('Sharing X axis')
# axarr[1].plot(t,xHat[1,:])
# axarr[2].plot(t,xHat[1,:]+xHat[2,:])
# axarr[2].plot(t,gyro)
# axarr[3].plot(t,xHat[2,:])
# axarr[3].plot(t,xHat[3,:])
# plt.show()
# f, axarr = plt.subplots(3, sharex=True)
# # f.set_title('woo')
# axarr[0].set_title('Constant Bias and Known Length')
# axarr[0].plot(t,u,label = 'Input [N*m]')
# axarr[0].plot(t,xHat[0,:], label = 'Theta [rad]')
# # axarr[0].set_title('In')
# axarr[0].legend()
# axarr[1].plot(t,xHat[1,:], label = 'Gyro Est. [rad/s]' )
# axarr[1].plot(t,gyro, label = 'Gyro Meas. [rad/s]')
# axarr[1].legend()
# # axarr[2].plot(t,gyro)
# axarr[2].plot(t,xHat[2,:],label = 'Gyro Bias [rad/s]')
# axarr[2].plot(t,xHat[3,:], label = 'Accel. Bias [m/s^2]')
# axarr[2].legend()
# plt.xlabel('time [s]')
# plt.subplots_adjust(left=0.1, right=0.9, top=0.9, bottom=0.1)
# # plt.show()
# plt.show()
f, axarr = plt.subplots(3, sharex=True)
# f.set_title('woo')
axarr[0].set_title('Dataset1, Varying Bias, Known Length')
axarr[0].plot(t,u,label = 'Input [N*m]')
axarr[0].plot(t,xHat[0,:], label = 'Theta [rad]')
# axarr[0].set_title('In')
axarr[0].legend(fontsize = 10)
axarr[1].plot(t,xHat[1,:], label = 'Gyro Est. [rad/s]' )
axarr[1].plot(t,gyro, label = 'Gyro Meas. [rad/s]')
axarr[1].legend(fontsize = 10)
# axarr[2].plot(t,gyro)
axarr[2].plot(t,xHat[2,:],label = 'Gyro Bias [rad/s]')
axarr[2].plot(t,xHat[3,:], label = 'Accel. Bias [m/s^2]')
axarr[2].legend(fontsize = 10)
# axarr[3].plot(t,xHat[4,:],label = 'Length Estimate')
# axarr[3].legend(fontsize = 10)
plt.xlabel('time [s]')
axarr[0].grid(b=True, which='major', color='black', linestyle='-')
axarr[1].grid(b=True, which='major', color='black', linestyle='-')
axarr[2].grid(b=True, which='major', color='black', linestyle='-')
# axarr[3].grid(b=True, which='major', color='black', linestyle='-')
# plt.show()
plt.subplots_adjust(left=0.08, right=.95, top=0.95, bottom=0.1)
# f.figsize=(20,10)
# plt.show()
# plt.plot(t,u)
# plt.plot(t,accel)
# plt.plot(t,gyro)
plt.show()
# print np.concatenate((math.sqrt(n)*np.eye(4),-math.sqrt(n)*np.eye(4)),axis = 1)
print 'ere'