forked from uzh-rpg/agile_autonomy
-
Notifications
You must be signed in to change notification settings - Fork 0
/
dagger_settings.yaml
57 lines (57 loc) · 1.92 KB
/
dagger_settings.yaml
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
log_dir: '/tmp/train_7m_object_straight/'
quad_name: 'hummingbird'
odometry_topic: 'ground_truth/odometry'
rgb_topic: 'agile_autonomy/unity_rgb'
depth_topic: 'agile_autonomy/sgm_depth'
use_rgb: False # Use camera images
use_depth: True # Use depth images
state_dim: 3 # x,y,z
out_seq_len: 10 # Number of steps in the future to predict
future_time: 5.0 # in seconds, how much in the future to track the reference
predict_state_number: [ ] # Empty list means will predict all states in out_seq_len. Otherwise it will train only for the single state. Only supported mode is len(predict_state_number) == 1.
seq_len: 1 # History Len. Reactive (hist = 1) works best.
modes: 3 # Number of modes
img_width: 224
img_height: 224
data_generation:
max_rollouts: 100
train_every_n_rollouts: 10
expert_folder: "../data_generation/data"
increase_net_usage_every_n_rollouts: 10
checkpoint:
resume_training: True
resume_file: "models/ckpt-50"
train:
max_training_epochs: 5
batch_size: 8
data_save_freq: 15
top_trajectories: 3
summary_freq: 400
train_dir: "data/train"
val_dir: "data/val" # you should fill this with some validation data
log_images: False
freeze_backbone: False
save_every_n_epochs: 5
ref_frame: 'bf'
track_global_traj: False
spacings: [6,5,4] # mt
test_time:
execute_nw_predictions: True
perform_inference: True # If `False` completely disables network forward passes
accept_thresh: 0.9 # when ratio btw other and best score is larger than this, other trajectory will be sent as well.
input_update_freq: 15 #Hz
fallback_radius_expert: 10 #m distance to trajectory to switch back. Put to zero when training from scratch
network_frequency: 15.0 #Hz
crashed_thr: 0.20 # 10 cm from a point is crash
verbose: False # saving net inputs
inputs:
position: False
attitude: True
bodyrates: True
velocity_frame: 'bf'
pitch_angle: 0
unity:
random_seed: 0
# x,y,z, yaw
# forest
unity_start_pos: [[-20.,20.,0.,0]]