-
Notifications
You must be signed in to change notification settings - Fork 0
/
Copy pathddpm.py
122 lines (104 loc) · 4.22 KB
/
ddpm.py
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
import os
import torch
import torch.nn as nn
from matplotlib import puplot as plt
from torch import optim
from tqdm import tqdm
import logging
from torch.utils.tensorboard import SummaryWriter
from utils import *
from modules import *
logging.basicConfig(format="%(asctime)s - %(levelname)s: %(message)s", level=logging.INFO, datefmt="%I:%M:%S")
class Diffusion:
def __init__(self,noise_steps=1000,beta_start=1e-4,beta_end=0.02,img_size=64,device="cuda"):
self.noise_steps=noise_steps
self.beta_start=beta_start
self.beta_end=beta_end
self.image_size=img_size
self.device=device
self.beta=self.prepare_noise_schedule().to(device)
self.alpha=1-self.beta
self.alpha_hat = torch.cumprod(self.alpha,dim=0)
def prepare_noise_schedule(self):
return torch.linspace(self.beta_start,self.beta_end,self.noise_steps)
def noise_images(self,x,t):
sqrt_alpha_hat= torch.sqrt(self.alpha_hat[t])[:,None,None,None]
sqrt_one_mnius_alpha_hat=torch.sqrt(1-self.alpha_hat[t])[:,None,None,None]
eps=torch.rand_like(x)
return sqrt_alpha_hat*x+sqrt_one_mnius_alpha_hat*eps,eps
def sample_timesteps(self,n):
return torch.randint(low=1,high=self.noise_steps,size=(n,))
def sample(self,model,n):
logging.info("Sampling %d images"%n)
model.eval()
with torch.no_grad():
#t=self.sample_timesteps(n)
x=torch.randn(n,3,self.image_size,self.image_size,device=self.device)
for i in tqdm(range(self.noise_steps)):
t=(torch.ones(n)*i).long().to(self.device)
predicted_noise=model(x,t)
alpha= self.alpha[t][:,None,None,None]
alpha_hat=self.alpha_hat[t][:,None,None,None]
beta=self.beta[t][:,None,None,None]
if i>1:
noise= torch.randn_like(x)
else:
noise=torch.zeros_like(x)
x=1/torch.sqrt(alpha_hat)*(x-((1-alpha)/(torch.sqrt(1-alpha_hat)))*predicted_noise)+torch.sqrt(beta)*noise
model.train()
x=(x.clap(-1,1)+1)/2
x=(x*255).type(torch.uint8)
return x
def train(args):
setup_logging(args.run_name)
device=args.device
dataloader=get_data(args)
model=UNet(device=device).to(device)
optimizer=optim.Adam(model.parameters(),lr=args.lr)
mse=nn.MSELoss()
Diffusion=Diffusion(noise_steps=args.noise_steps,beta_start=args.beta_start,beta_end=args.beta_end,img_size=args.image_size,device=device)
logger = SummaryWriter(os.path.join("logs", args.run_name))
l=len(dataloader)
for epoch in range(args.epochs):
logging.info("Epoch %d"%epoch)
pbar=tqdm(dataloader)
for i,(x,_) in enumerate(pbar):
x=x.to(device)
t=Diffusion.sample_timesteps(x.shape[0]).to(device)
x_t,noise=Diffusion.noise_images(x,t)
predicted_noise=model(x_t,t)
loss=mse(noise,predicted_noise)
optimizer.zero_grad()
loss.backward()
optimizer.step()
pbar.set_postfix(MSE=loss.item())
logger.add_scalar("MSE", loss.item(), global_step=epoch * l + i)
sampled_images = Diffusion.sample(model, n=x.shape[0])
save_images(sampled_images, os.path.join("results", args.run_name, f"{epoch}.jpg"))
torch.save(model.state_dict(), os.path.join("models", args.run_name, f"ckpt.pt"))
def launch():
import argparse
parser = argparse.ArgumentParser()
args = parser.parse_args()
args.run_name = "DDPM_Uncondtional"
args.epochs = 500
args.batch_size = 12
args.image_size = 64
args.dataset_path = r"x"
args.device = "cuda"
args.lr = 3e-4
train(args)
if __name__ == '__main__':
launch()
# device = "cuda"
# model = UNet().to(device)
# ckpt = torch.load("./working/orig/ckpt.pt")
# model.load_state_dict(ckpt)
# diffusion = Diffusion(img_size=64, device=device)
# x = diffusion.sample(model, 8)
# print(x.shape)
# plt.figure(figsize=(32, 32))
# plt.imshow(torch.cat([
# torch.cat([i for i in x.cpu()], dim=-1),
# ], dim=-2).permute(1, 2, 0).cpu())
# plt.show()