Skip to content
New issue

Have a question about this project? Sign up for a free GitHub account to open an issue and contact its maintainers and the community.

By clicking “Sign up for GitHub”, you agree to our terms of service and privacy statement. We’ll occasionally send you account related emails.

Already on GitHub? Sign in to your account

Support for LEB128 compression of feature transformer parameters. #251

Merged
merged 1 commit into from
Jun 23, 2023

Conversation

Sopel97
Copy link
Member

@Sopel97 Sopel97 commented Jun 19, 2023

This PR makes small alterations to the .nnue storage format and adds support for LEB128 compression of weights (right now only for the feature transformer). An additional --ft_compression CLI parameter may be used when serializing a network to .nnue. Note that it's also valid to serialize from .nnue to .nnue, which can be used for compressing already existing networks. Example:

python serialize.py --features=HalfKAv2_hm nn-fdc1d0fe6455.nnue a.nnue --ft_compression=leb128
python serialize.py --features=HalfKAv2_hm a.nnue b.nnue --ft_compression=leb128
python serialize.py --features=HalfKAv2_hm a.nnue c.nnue

Now, every saved tensor may have a header, right now only present if the tensor is compressed. This header specifies the compression method used, and may contain other information useful for decoding. Since this header is optional to maintain backwards compatibility it is marked by a relatively long magic string so that the chance of a collision with an otherwise valid old network is minimal.

For LEB128 compression the header consists of a string "COMPRESSED_LEB128" encoded in utf-8, followed by little-endian int32 equal to the number of bytes taken by the compressed tensor data. Stockfish can of course choose to support only one variant, since we have full control over how network are made and we don't require support for networks other than the default one.

Sibling PR on Stockfish side. official-stockfish/Stockfish#4617

Thanks to @MaximMolchanov for suggesting using numba and providing fast leb128 encode/decode functions.

linrock added a commit to linrock/Stockfish that referenced this pull request Jun 22, 2023
Created by retraining the sparsified master net (nn-cd2ff4716c34.nnue) on
a 100% minified dataset including Leela transformers data from T80 may2023.

Weights permuted with the exact methods and code in:
official-stockfish#4620

LEB128 compression done with the new serialize.py param in:
official-stockfish/nnue-pytorch#251

Initially trained with max epoch 800. Around epoch 780, training was paused
and max epoch raised to 960.

python3 easy_train.py \
  --experiment-name L1-1536-sparse-master-retrain \
  --training-dataset /data/leela96-dfrc99-v2-T60novdecT77decT78jantosepT79aprmayT80juntonovjan-v6dd-T80febtomay2023.min.binpack \
  --early-fen-skipping 27 \
  --start-from-engine-test-net True \
  --max_epoch 960 \
  --lr 4.375e-4 \
  --gamma 0.995 \
  --start-lambda 1.0 \
  --end-lambda 0.7 \
  --tui False \
  --seed $RANDOM \
  --gpus 0

For preparing the training dataset (interleaved size 328G):

python3 interleave_binpacks.py \
  leela96-filt-v2.min.binpack \
  dfrc99-16tb7p-eval-filt-v2.min.binpack \
  filt-v6-dd-min/test60-novdec2021-12tb7p-filter-v6-dd.min.binpack \
  filt-v6-dd-min/test77-dec2021-16tb7p-filter-v6-dd.min.binpack \
  filt-v6-dd-min/test78-jantomay2022-16tb7p-filter-v6-dd.min.binpack \
  filt-v6-dd-min/test78-juntosep2022-16tb7p-filter-v6-dd.min.binpack \
  filt-v6-dd-min/test79-apr2022-16tb7p-filter-v6-dd.min.binpack \
  filt-v6-dd-min/test79-may2022-16tb7p-filter-v6-dd.min.binpack \
  filt-v6-dd-min/test80-jun2022-16tb7p-filter-v6-dd.min.binpack \
  filt-v6-dd-min/test80-jul2022-16tb7p-filter-v6-dd.min.binpack \
  filt-v6-dd-min/test80-aug2022-16tb7p-filter-v6-dd.min.binpack \
  filt-v6-dd-min/test80-sep2022-16tb7p-filter-v6-dd.min.binpack \
  filt-v6-dd-min/test80-oct2022-16tb7p-filter-v6-dd.min.binpack \
  filt-v6-dd-min/test80-nov2022-16tb7p-filter-v6-dd.min.binpack \
  filt-v6-dd-min/test80-jan2023-16tb7p-filter-v6-dd.min.binpack \
  test80-2023/test80-feb2023-16tb7p-no-db.min.binpack \
  test80-2023/test80-mar2023-2tb7p-no-db.min.binpack \
  test80-2023/test80-apr2023-2tb7p-no-db.min.binpack \
  test80-2023/test80-may2023-2tb7p-no-db.min.binpack \
  /data/leela96-dfrc99-v2-T60novdecT77decT78jantosepT79aprmayT80juntonovjan-v6dd-T80febtomay2023.min.binpack

Minified binpacks and Leela T80 training data from 2023 available at:
https://robotmoon.com/nnue-training-data/

Local elo at 25k nodes per move:
nn-epoch879.nnue : 3.9 +/- 5.7

Passed STC:
https://tests.stockfishchess.org/tests/view/64928c1bdc7002ce609c7690
LLR: 2.94 (-2.94,2.94) <0.00,2.00>
Total: 72000 W: 19242 L: 18889 D: 33869
Ptnml(0-2): 182, 7787, 19716, 8126, 189

Passed LTC:
https://tests.stockfishchess.org/tests/view/64930a37dc7002ce609c82e3
LLR: 2.94 (-2.94,2.94) <0.50,2.50>
Total: 54552 W: 14978 L: 14647 D: 24927
Ptnml(0-2): 23, 5123, 16650, 5460, 20

bench 2593605
vondele pushed a commit to vondele/Stockfish that referenced this pull request Jun 22, 2023
Created by retraining the sparsified master net (nn-cd2ff4716c34.nnue) on
a 100% minified dataset including Leela transformers data from T80 may2023.

Weights permuted with the exact methods and code in:
official-stockfish#4620

LEB128 compression done with the new serialize.py param in:
official-stockfish/nnue-pytorch#251

Initially trained with max epoch 800. Around epoch 780, training was paused
and max epoch raised to 960.

python3 easy_train.py \
  --experiment-name L1-1536-sparse-master-retrain \
  --training-dataset /data/leela96-dfrc99-v2-T60novdecT77decT78jantosepT79aprmayT80juntonovjan-v6dd-T80febtomay2023.min.binpack \
  --early-fen-skipping 27 \
  --start-from-engine-test-net True \
  --max_epoch 960 \
  --lr 4.375e-4 \
  --gamma 0.995 \
  --start-lambda 1.0 \
  --end-lambda 0.7 \
  --tui False \
  --seed $RANDOM \
  --gpus 0

For preparing the training dataset (interleaved size 328G):

python3 interleave_binpacks.py \
  leela96-filt-v2.min.binpack \
  dfrc99-16tb7p-eval-filt-v2.min.binpack \
  filt-v6-dd-min/test60-novdec2021-12tb7p-filter-v6-dd.min.binpack \
  filt-v6-dd-min/test77-dec2021-16tb7p-filter-v6-dd.min.binpack \
  filt-v6-dd-min/test78-jantomay2022-16tb7p-filter-v6-dd.min.binpack \
  filt-v6-dd-min/test78-juntosep2022-16tb7p-filter-v6-dd.min.binpack \
  filt-v6-dd-min/test79-apr2022-16tb7p-filter-v6-dd.min.binpack \
  filt-v6-dd-min/test79-may2022-16tb7p-filter-v6-dd.min.binpack \
  filt-v6-dd-min/test80-jun2022-16tb7p-filter-v6-dd.min.binpack \
  filt-v6-dd-min/test80-jul2022-16tb7p-filter-v6-dd.min.binpack \
  filt-v6-dd-min/test80-aug2022-16tb7p-filter-v6-dd.min.binpack \
  filt-v6-dd-min/test80-sep2022-16tb7p-filter-v6-dd.min.binpack \
  filt-v6-dd-min/test80-oct2022-16tb7p-filter-v6-dd.min.binpack \
  filt-v6-dd-min/test80-nov2022-16tb7p-filter-v6-dd.min.binpack \
  filt-v6-dd-min/test80-jan2023-16tb7p-filter-v6-dd.min.binpack \
  test80-2023/test80-feb2023-16tb7p-no-db.min.binpack \
  test80-2023/test80-mar2023-2tb7p-no-db.min.binpack \
  test80-2023/test80-apr2023-2tb7p-no-db.min.binpack \
  test80-2023/test80-may2023-2tb7p-no-db.min.binpack \
  /data/leela96-dfrc99-v2-T60novdecT77decT78jantosepT79aprmayT80juntonovjan-v6dd-T80febtomay2023.min.binpack

Minified binpacks and Leela T80 training data from 2023 available at:
https://robotmoon.com/nnue-training-data/

Local elo at 25k nodes per move:
nn-epoch879.nnue : 3.9 +/- 5.7

Passed STC:
https://tests.stockfishchess.org/tests/view/64928c1bdc7002ce609c7690
LLR: 2.94 (-2.94,2.94) <0.00,2.00>
Total: 72000 W: 19242 L: 18889 D: 33869
Ptnml(0-2): 182, 7787, 19716, 8126, 189

Passed LTC:
https://tests.stockfishchess.org/tests/view/64930a37dc7002ce609c82e3
LLR: 2.94 (-2.94,2.94) <0.50,2.50>
Total: 54552 W: 14978 L: 14647 D: 24927
Ptnml(0-2): 23, 5123, 16650, 5460, 20

closes official-stockfish#4635

bench 2593605
Joachim26 pushed a commit to Joachim26/StockfishNPS that referenced this pull request Jun 22, 2023
Created by retraining the sparsified master net (nn-cd2ff4716c34.nnue) on
a 100% minified dataset including Leela transformers data from T80 may2023.

Weights permuted with the exact methods and code in:
official-stockfish#4620

LEB128 compression done with the new serialize.py param in:
official-stockfish/nnue-pytorch#251

Initially trained with max epoch 800. Around epoch 780, training was paused
and max epoch raised to 960.

python3 easy_train.py \
  --experiment-name L1-1536-sparse-master-retrain \
  --training-dataset /data/leela96-dfrc99-v2-T60novdecT77decT78jantosepT79aprmayT80juntonovjan-v6dd-T80febtomay2023.min.binpack \
  --early-fen-skipping 27 \
  --start-from-engine-test-net True \
  --max_epoch 960 \
  --lr 4.375e-4 \
  --gamma 0.995 \
  --start-lambda 1.0 \
  --end-lambda 0.7 \
  --tui False \
  --seed $RANDOM \
  --gpus 0

For preparing the training dataset (interleaved size 328G):

python3 interleave_binpacks.py \
  leela96-filt-v2.min.binpack \
  dfrc99-16tb7p-eval-filt-v2.min.binpack \
  filt-v6-dd-min/test60-novdec2021-12tb7p-filter-v6-dd.min.binpack \
  filt-v6-dd-min/test77-dec2021-16tb7p-filter-v6-dd.min.binpack \
  filt-v6-dd-min/test78-jantomay2022-16tb7p-filter-v6-dd.min.binpack \
  filt-v6-dd-min/test78-juntosep2022-16tb7p-filter-v6-dd.min.binpack \
  filt-v6-dd-min/test79-apr2022-16tb7p-filter-v6-dd.min.binpack \
  filt-v6-dd-min/test79-may2022-16tb7p-filter-v6-dd.min.binpack \
  filt-v6-dd-min/test80-jun2022-16tb7p-filter-v6-dd.min.binpack \
  filt-v6-dd-min/test80-jul2022-16tb7p-filter-v6-dd.min.binpack \
  filt-v6-dd-min/test80-aug2022-16tb7p-filter-v6-dd.min.binpack \
  filt-v6-dd-min/test80-sep2022-16tb7p-filter-v6-dd.min.binpack \
  filt-v6-dd-min/test80-oct2022-16tb7p-filter-v6-dd.min.binpack \
  filt-v6-dd-min/test80-nov2022-16tb7p-filter-v6-dd.min.binpack \
  filt-v6-dd-min/test80-jan2023-16tb7p-filter-v6-dd.min.binpack \
  test80-2023/test80-feb2023-16tb7p-no-db.min.binpack \
  test80-2023/test80-mar2023-2tb7p-no-db.min.binpack \
  test80-2023/test80-apr2023-2tb7p-no-db.min.binpack \
  test80-2023/test80-may2023-2tb7p-no-db.min.binpack \
  /data/leela96-dfrc99-v2-T60novdecT77decT78jantosepT79aprmayT80juntonovjan-v6dd-T80febtomay2023.min.binpack

Minified binpacks and Leela T80 training data from 2023 available at:
https://robotmoon.com/nnue-training-data/

Local elo at 25k nodes per move:
nn-epoch879.nnue : 3.9 +/- 5.7

Passed STC:
https://tests.stockfishchess.org/tests/view/64928c1bdc7002ce609c7690
LLR: 2.94 (-2.94,2.94) <0.00,2.00>
Total: 72000 W: 19242 L: 18889 D: 33869
Ptnml(0-2): 182, 7787, 19716, 8126, 189

Passed LTC:
https://tests.stockfishchess.org/tests/view/64930a37dc7002ce609c82e3
LLR: 2.94 (-2.94,2.94) <0.50,2.50>
Total: 54552 W: 14978 L: 14647 D: 24927
Ptnml(0-2): 23, 5123, 16650, 5460, 20

closes official-stockfish#4635

bench 2593605
rn5f107s2 pushed a commit to rn5f107s2/Stockfish that referenced this pull request Jun 22, 2023
Created by retraining the sparsified master net (nn-cd2ff4716c34.nnue) on
a 100% minified dataset including Leela transformers data from T80 may2023.

Weights permuted with the exact methods and code in:
official-stockfish#4620

LEB128 compression done with the new serialize.py param in:
official-stockfish/nnue-pytorch#251

Initially trained with max epoch 800. Around epoch 780, training was paused
and max epoch raised to 960.

python3 easy_train.py \
  --experiment-name L1-1536-sparse-master-retrain \
  --training-dataset /data/leela96-dfrc99-v2-T60novdecT77decT78jantosepT79aprmayT80juntonovjan-v6dd-T80febtomay2023.min.binpack \
  --early-fen-skipping 27 \
  --start-from-engine-test-net True \
  --max_epoch 960 \
  --lr 4.375e-4 \
  --gamma 0.995 \
  --start-lambda 1.0 \
  --end-lambda 0.7 \
  --tui False \
  --seed $RANDOM \
  --gpus 0

For preparing the training dataset (interleaved size 328G):

python3 interleave_binpacks.py \
  leela96-filt-v2.min.binpack \
  dfrc99-16tb7p-eval-filt-v2.min.binpack \
  filt-v6-dd-min/test60-novdec2021-12tb7p-filter-v6-dd.min.binpack \
  filt-v6-dd-min/test77-dec2021-16tb7p-filter-v6-dd.min.binpack \
  filt-v6-dd-min/test78-jantomay2022-16tb7p-filter-v6-dd.min.binpack \
  filt-v6-dd-min/test78-juntosep2022-16tb7p-filter-v6-dd.min.binpack \
  filt-v6-dd-min/test79-apr2022-16tb7p-filter-v6-dd.min.binpack \
  filt-v6-dd-min/test79-may2022-16tb7p-filter-v6-dd.min.binpack \
  filt-v6-dd-min/test80-jun2022-16tb7p-filter-v6-dd.min.binpack \
  filt-v6-dd-min/test80-jul2022-16tb7p-filter-v6-dd.min.binpack \
  filt-v6-dd-min/test80-aug2022-16tb7p-filter-v6-dd.min.binpack \
  filt-v6-dd-min/test80-sep2022-16tb7p-filter-v6-dd.min.binpack \
  filt-v6-dd-min/test80-oct2022-16tb7p-filter-v6-dd.min.binpack \
  filt-v6-dd-min/test80-nov2022-16tb7p-filter-v6-dd.min.binpack \
  filt-v6-dd-min/test80-jan2023-16tb7p-filter-v6-dd.min.binpack \
  test80-2023/test80-feb2023-16tb7p-no-db.min.binpack \
  test80-2023/test80-mar2023-2tb7p-no-db.min.binpack \
  test80-2023/test80-apr2023-2tb7p-no-db.min.binpack \
  test80-2023/test80-may2023-2tb7p-no-db.min.binpack \
  /data/leela96-dfrc99-v2-T60novdecT77decT78jantosepT79aprmayT80juntonovjan-v6dd-T80febtomay2023.min.binpack

Minified binpacks and Leela T80 training data from 2023 available at:
https://robotmoon.com/nnue-training-data/

Local elo at 25k nodes per move:
nn-epoch879.nnue : 3.9 +/- 5.7

Passed STC:
https://tests.stockfishchess.org/tests/view/64928c1bdc7002ce609c7690
LLR: 2.94 (-2.94,2.94) <0.00,2.00>
Total: 72000 W: 19242 L: 18889 D: 33869
Ptnml(0-2): 182, 7787, 19716, 8126, 189

Passed LTC:
https://tests.stockfishchess.org/tests/view/64930a37dc7002ce609c82e3
LLR: 2.94 (-2.94,2.94) <0.50,2.50>
Total: 54552 W: 14978 L: 14647 D: 24927
Ptnml(0-2): 23, 5123, 16650, 5460, 20

closes official-stockfish#4635

bench 2593605
Zerbinati added a commit to Zerbinati/SugaR-XPrO that referenced this pull request Jun 22, 2023
Created by retraining the sparsified master net (nn-cd2ff4716c34.nnue) on
a 100% minified dataset including Leela transformers data from T80 may2023.

Weights permuted with the exact methods and code in:
#4620

LEB128 compression done with the new serialize.py param in:
official-stockfish/nnue-pytorch#251

Initially trained with max epoch 800. Around epoch 780, training was paused
and max epoch raised to 960.

python3 easy_train.py \
  --experiment-name L1-1536-sparse-master-retrain \
  --training-dataset /data/leela96-dfrc99-v2-T60novdecT77decT78jantosepT79aprmayT80juntonovjan-v6dd-T80febtomay2023.min.binpack \
  --early-fen-skipping 27 \
  --start-from-engine-test-net True \
  --max_epoch 960 \
  --lr 4.375e-4 \
  --gamma 0.995 \
  --start-lambda 1.0 \
  --end-lambda 0.7 \
  --tui False \
  --seed $RANDOM \
  --gpus 0

For preparing the training dataset (interleaved size 328G):

python3 interleave_binpacks.py \
  leela96-filt-v2.min.binpack \
  dfrc99-16tb7p-eval-filt-v2.min.binpack \
  filt-v6-dd-min/test60-novdec2021-12tb7p-filter-v6-dd.min.binpack \
  filt-v6-dd-min/test77-dec2021-16tb7p-filter-v6-dd.min.binpack \
  filt-v6-dd-min/test78-jantomay2022-16tb7p-filter-v6-dd.min.binpack \
  filt-v6-dd-min/test78-juntosep2022-16tb7p-filter-v6-dd.min.binpack \
  filt-v6-dd-min/test79-apr2022-16tb7p-filter-v6-dd.min.binpack \
  filt-v6-dd-min/test79-may2022-16tb7p-filter-v6-dd.min.binpack \
  filt-v6-dd-min/test80-jun2022-16tb7p-filter-v6-dd.min.binpack \
  filt-v6-dd-min/test80-jul2022-16tb7p-filter-v6-dd.min.binpack \
  filt-v6-dd-min/test80-aug2022-16tb7p-filter-v6-dd.min.binpack \
  filt-v6-dd-min/test80-sep2022-16tb7p-filter-v6-dd.min.binpack \
  filt-v6-dd-min/test80-oct2022-16tb7p-filter-v6-dd.min.binpack \
  filt-v6-dd-min/test80-nov2022-16tb7p-filter-v6-dd.min.binpack \
  filt-v6-dd-min/test80-jan2023-16tb7p-filter-v6-dd.min.binpack \
  test80-2023/test80-feb2023-16tb7p-no-db.min.binpack \
  test80-2023/test80-mar2023-2tb7p-no-db.min.binpack \
  test80-2023/test80-apr2023-2tb7p-no-db.min.binpack \
  test80-2023/test80-may2023-2tb7p-no-db.min.binpack \
  /data/leela96-dfrc99-v2-T60novdecT77decT78jantosepT79aprmayT80juntonovjan-v6dd-T80febtomay2023.min.binpack

Minified binpacks and Leela T80 training data from 2023 available at:
https://robotmoon.com/nnue-training-data/

Local elo at 25k nodes per move:
nn-epoch879.nnue : 3.9 +/- 5.7

Passed STC:
https://tests.stockfishchess.org/tests/view/64928c1bdc7002ce609c7690
LLR: 2.94 (-2.94,2.94) <0.00,2.00>
Total: 72000 W: 19242 L: 18889 D: 33869
Ptnml(0-2): 182, 7787, 19716, 8126, 189

Passed LTC:
https://tests.stockfishchess.org/tests/view/64930a37dc7002ce609c82e3
LLR: 2.94 (-2.94,2.94) <0.50,2.50>
Total: 54552 W: 14978 L: 14647 D: 24927
Ptnml(0-2): 23, 5123, 16650, 5460, 20

closes #4635

bench 2593605
 master
 stockfish-dev-20230622-a49b3ba7
@linrock
@vondele
linrock authored
@vondele
Copy link
Member

vondele commented Jun 23, 2023

looks good to me, can this be merged?

@Sopel97
Copy link
Member Author

Sopel97 commented Jun 23, 2023

yes, this is final

@vondele vondele merged commit f96602a into official-stockfish:master Jun 23, 2023
linrock added a commit to linrock/Stockfish that referenced this pull request Jun 29, 2023
Creating this net involved:
- a 5-step training process from scratch
- greedy permuting L1 weights with official-stockfish#4620
- leb128 compression with official-stockfish/nnue-pytorch#251
- greedy 2- and 3- cycle permuting with official-stockfish#4640

The 5 training steps were:

1. 400 epochs, lambda 1.0, lr 9.75e-4
   UHOx2-wIsRight-multinet-dfrc-n5000-largeGensfen-d9.binpack (178G)
     nodes5000pv2_UHO.binpack
     data_pv-2_diff-100_nodes-5000.binpack
     wrongIsRight_nodes5000pv2.binpack
     multinet_pv-2_diff-100_nodes-5000.binpack
     dfrc_n5000.binpack
     large_gensfen_multipvdiff_100_d9.binpack
   ep399 chosen as start model for step2

2. 800 epochs, end-lambda 0.75, skip 16
   LeelaFarseer-T78juntoaugT79marT80dec.binpack (141G)
     T60T70wIsRightFarseerT60T74T75T76.binpack
     test78-junjulaug2022-16tb7p.no-db.min.binpack
     test79-mar2022-16tb7p.no-db.min.binpack
     test80-dec2022-16tb7p.no-db.min.binpack
   ep559 chosen as start model for step3

3. 800 epochs, end-lambda 0.725, skip 20
   leela96-dfrc99-v2-T80dectofeb-sk20-mar-v6-T77decT78janfebT79apr.binpack (223G)
     leela96-filt-v2.min.binpack
     dfrc99-16tb7p-eval-filt-v2.min.binpack
     test80-dec2022-16tb7p-filter-v6-sk20.min-mar2023.binpack
     test80-jan2023-16tb7p-filter-v6-sk20.min-mar2023.binpack
     test80-feb2023-16tb7p-filter-v6-sk20.min-mar2023.binpack
     test80-mar2023-2tb7p-filter-v6.min.binpack
     test77-dec2021-16tb7p.no-db.min.binpack
     test78-janfeb2022-16tb7p.no-db.min.binpack
     test79-apr2022-16tb7p.no-db.min.binpack
   ep499 chosen as start model for step4

4. 800 epochs, end-lambda 0.7, skip 24
   0dd1cebea57 dataset official-stockfish#4606
   ep599 chosen as start model for step5

5. 800 epochs, end-lambda 0.7, skip 28
   same dataset as step4
   ep619 became nn-1b951f8b449d.nnue

For the final step5 training:

python3 easy_train.py \
  --experiment-name L1-2048-S5-sameData-sk28-S4-0dd1cebea57-shuffled-S3-leela96-dfrc99-v2-T80dectofeb-sk20-mar-v6-T77decT78janfebT79apr-sk20-S2-LeelaFarseerT78T79T80-ep399-S1-UHOx2-wIsRight-multinet-dfrc-n5000-largeGensfen-d9 \
  --training-dataset /data/leela96-dfrc99-T60novdec-v2-T80juntonovjanfebT79aprmayT78jantosepT77dec-v6dd-T80apr.binpack \
  --early-fen-skipping 28 \
  --nnue-pytorch-branch linrock/nnue-pytorch/misc-fixes-L1-2048 \
  --engine-test-branch linrock/Stockfish/L1-2048 \
  --start-from-engine-test-net False \
  --start-from-model /data/experiments/experiment_L1-2048-S4-0dd1cebea57-shuffled-S3-leela96-dfrc99-v2-T80dectofeb-sk20-mar-v6-T77decT78janfebT79apr-sk20-S2-LeelaFarseerT78T79T80-ep399-S1-UHOx2-wIsRight-multinet-dfrc-n5000-largeGensfen-d9/training/run_0/nn-epoch599.nnue
  --max_epoch 800 \
  --lr 4.375e-4 \
  --gamma 0.995 \
  --start-lambda 1.0 \
  --end-lambda 0.7 \
  --tui False \
  --seed $RANDOM \
  --gpus 0

SF training data components for the step1 dataset:
https://drive.google.com/drive/folders/1yLCEmioC3Xx9KQr4T7uB6GnLm5icAYGU

Leela training data for steps 2-5 can be found at:
https://robotmoon.com/nnue-training-data/

Due to larger L1 size and slower inference, the speed penalty loses elo
at STC. Measurements from 100 bench runs at depth 13 with x86-64-modern
on Intel Core i5-1038NG7 2.00GHz:

sf_base =  1240730  +/-   3443 (95%)
sf_test =  1153341  +/-   2832 (95%)
diff    =   -87388  +/-   1616 (95%)
speedup = -7.04330% +/- 0.130% (95%)

Local elo at 25k nodes per move (vs. L1-1536 nn-fdc1d0fe6455.nnue):
nn-epoch619.nnue : 21.1 +/- 3.2

Failed STC:
https://tests.stockfishchess.org/tests/view/6498ee93dc7002ce609cf979
LLR: -2.95 (-2.94,2.94) <0.00,2.00>
Total: 11680 W: 3058 L: 3299 D: 5323
Ptnml(0-2): 44, 1422, 3149, 1181, 44

LTC:
https://tests.stockfishchess.org/tests/view/649b32f5dc7002ce609d20cf
Elo: 0.68 ± 1.5 (95%) LOS: 80.5%
Total: 40000 W: 10887 L: 10809 D: 18304
Ptnml(0-2): 36, 3938, 11958, 4048, 20
nElo: 1.50 ± 3.4 (95%) PairsRatio: 1.02

Passed VLTC 180+1.8:
https://tests.stockfishchess.org/tests/view/64992b43dc7002ce609cfd20
LLR: 3.06 (-2.94,2.94) <0.00,2.00>
Total: 38086 W: 10612 L: 10338 D: 17136
Ptnml(0-2): 9, 3316, 12115, 3598, 5

Passed VLTC SMP 60+0.6 th 8:
https://tests.stockfishchess.org/tests/view/649a21fedc7002ce609d0c7d
LLR: 2.95 (-2.94,2.94) <0.50,2.50>
Total: 38936 W: 11091 L: 10820 D: 17025
Ptnml(0-2): 1, 2948, 13305, 3207, 7

bench 2858591
linrock added a commit to linrock/Stockfish that referenced this pull request Jun 29, 2023
Creating this net involved:
- a 5-step training process from scratch
- greedy permuting L1 weights with official-stockfish#4620
- leb128 compression with official-stockfish/nnue-pytorch#251
- greedy 2- and 3- cycle permuting with official-stockfish#4640

The 5 training steps were:

1. 400 epochs, lambda 1.0, lr 9.75e-4
   UHOx2-wIsRight-multinet-dfrc-n5000-largeGensfen-d9.binpack (178G)
     nodes5000pv2_UHO.binpack
     data_pv-2_diff-100_nodes-5000.binpack
     wrongIsRight_nodes5000pv2.binpack
     multinet_pv-2_diff-100_nodes-5000.binpack
     dfrc_n5000.binpack
     large_gensfen_multipvdiff_100_d9.binpack
   ep399 chosen as start model for step2

2. 800 epochs, end-lambda 0.75, skip 16
   LeelaFarseer-T78juntoaugT79marT80dec.binpack (141G)
     T60T70wIsRightFarseerT60T74T75T76.binpack
     test78-junjulaug2022-16tb7p.no-db.min.binpack
     test79-mar2022-16tb7p.no-db.min.binpack
     test80-dec2022-16tb7p.no-db.min.binpack
   ep559 chosen as start model for step3

3. 800 epochs, end-lambda 0.725, skip 20
   leela96-dfrc99-v2-T80dectofeb-sk20-mar-v6-T77decT78janfebT79apr.binpack (223G)
     leela96-filt-v2.min.binpack
     dfrc99-16tb7p-eval-filt-v2.min.binpack
     test80-dec2022-16tb7p-filter-v6-sk20.min-mar2023.binpack
     test80-jan2023-16tb7p-filter-v6-sk20.min-mar2023.binpack
     test80-feb2023-16tb7p-filter-v6-sk20.min-mar2023.binpack
     test80-mar2023-2tb7p-filter-v6.min.binpack
     test77-dec2021-16tb7p.no-db.min.binpack
     test78-janfeb2022-16tb7p.no-db.min.binpack
     test79-apr2022-16tb7p.no-db.min.binpack
   ep499 chosen as start model for step4

4. 800 epochs, end-lambda 0.7, skip 24
   0dd1cebea57 dataset official-stockfish#4606
   ep599 chosen as start model for step5

5. 800 epochs, end-lambda 0.7, skip 28
   same dataset as step4
   ep619 became nn-1b951f8b449d.nnue

For the final step5 training:

python3 easy_train.py \
  --experiment-name L1-2048-S5-sameData-sk28-S4-0dd1cebea57-shuffled-S3-leela96-dfrc99-v2-T80dectofeb-sk20-mar-v6-T77decT78janfebT79apr-sk20-S2-LeelaFarseerT78T79T80-ep399-S1-UHOx2-wIsRight-multinet-dfrc-n5000-largeGensfen-d9 \
  --training-dataset /data/leela96-dfrc99-T60novdec-v2-T80juntonovjanfebT79aprmayT78jantosepT77dec-v6dd-T80apr.binpack \
  --early-fen-skipping 28 \
  --nnue-pytorch-branch linrock/nnue-pytorch/misc-fixes-L1-2048 \
  --engine-test-branch linrock/Stockfish/L1-2048 \
  --start-from-engine-test-net False \
  --start-from-model /data/experiments/experiment_L1-2048-S4-0dd1cebea57-shuffled-S3-leela96-dfrc99-v2-T80dectofeb-sk20-mar-v6-T77decT78janfebT79apr-sk20-S2-LeelaFarseerT78T79T80-ep399-S1-UHOx2-wIsRight-multinet-dfrc-n5000-largeGensfen-d9/training/run_0/nn-epoch599.nnue
  --max_epoch 800 \
  --lr 4.375e-4 \
  --gamma 0.995 \
  --start-lambda 1.0 \
  --end-lambda 0.7 \
  --tui False \
  --seed $RANDOM \
  --gpus 0

SF training data components for the step1 dataset:
https://drive.google.com/drive/folders/1yLCEmioC3Xx9KQr4T7uB6GnLm5icAYGU

Leela training data for steps 2-5 can be found at:
https://robotmoon.com/nnue-training-data/

Due to larger L1 size and slower inference, the speed penalty loses elo
at STC. Measurements from 100 bench runs at depth 13 with x86-64-modern
on Intel Core i5-1038NG7 2.00GHz:

sf_base =  1240730  +/-   3443 (95%)
sf_test =  1153341  +/-   2832 (95%)
diff    =   -87388  +/-   1616 (95%)
speedup = -7.04330% +/- 0.130% (95%)

Local elo at 25k nodes per move (vs. L1-1536 nn-fdc1d0fe6455.nnue):
nn-epoch619.nnue : 21.1 +/- 3.2

Failed STC:
https://tests.stockfishchess.org/tests/view/6498ee93dc7002ce609cf979
LLR: -2.95 (-2.94,2.94) <0.00,2.00>
Total: 11680 W: 3058 L: 3299 D: 5323
Ptnml(0-2): 44, 1422, 3149, 1181, 44

LTC:
https://tests.stockfishchess.org/tests/view/649b32f5dc7002ce609d20cf
Elo: 0.68 ± 1.5 (95%) LOS: 80.5%
Total: 40000 W: 10887 L: 10809 D: 18304
Ptnml(0-2): 36, 3938, 11958, 4048, 20
nElo: 1.50 ± 3.4 (95%) PairsRatio: 1.02

Passed VLTC 180+1.8:
https://tests.stockfishchess.org/tests/view/64992b43dc7002ce609cfd20
LLR: 3.06 (-2.94,2.94) <0.00,2.00>
Total: 38086 W: 10612 L: 10338 D: 17136
Ptnml(0-2): 9, 3316, 12115, 3598, 5

Passed VLTC SMP 60+0.6 th 8:
https://tests.stockfishchess.org/tests/view/649a21fedc7002ce609d0c7d
LLR: 2.95 (-2.94,2.94) <0.50,2.50>
Total: 38936 W: 11091 L: 10820 D: 17025
Ptnml(0-2): 1, 2948, 13305, 3207, 7

bench 2858591
vondele pushed a commit to vondele/Stockfish that referenced this pull request Jul 1, 2023
Creating this net involved:
- a 5-step training process from scratch
- greedy permuting L1 weights with official-stockfish#4620
- leb128 compression with official-stockfish/nnue-pytorch#251
- greedy 2- and 3- cycle permuting with official-stockfish#4640

The 5 training steps were:

1. 400 epochs, lambda 1.0, lr 9.75e-4
   UHOx2-wIsRight-multinet-dfrc-n5000-largeGensfen-d9.binpack (178G)
     nodes5000pv2_UHO.binpack
     data_pv-2_diff-100_nodes-5000.binpack
     wrongIsRight_nodes5000pv2.binpack
     multinet_pv-2_diff-100_nodes-5000.binpack
     dfrc_n5000.binpack
     large_gensfen_multipvdiff_100_d9.binpack
   ep399 chosen as start model for step2

2. 800 epochs, end-lambda 0.75, skip 16
   LeelaFarseer-T78juntoaugT79marT80dec.binpack (141G)
     T60T70wIsRightFarseerT60T74T75T76.binpack
     test78-junjulaug2022-16tb7p.no-db.min.binpack
     test79-mar2022-16tb7p.no-db.min.binpack
     test80-dec2022-16tb7p.no-db.min.binpack
   ep559 chosen as start model for step3

3. 800 epochs, end-lambda 0.725, skip 20
   leela96-dfrc99-v2-T80dectofeb-sk20-mar-v6-T77decT78janfebT79apr.binpack (223G)
     leela96-filt-v2.min.binpack
     dfrc99-16tb7p-eval-filt-v2.min.binpack
     test80-dec2022-16tb7p-filter-v6-sk20.min-mar2023.binpack
     test80-jan2023-16tb7p-filter-v6-sk20.min-mar2023.binpack
     test80-feb2023-16tb7p-filter-v6-sk20.min-mar2023.binpack
     test80-mar2023-2tb7p-filter-v6.min.binpack
     test77-dec2021-16tb7p.no-db.min.binpack
     test78-janfeb2022-16tb7p.no-db.min.binpack
     test79-apr2022-16tb7p.no-db.min.binpack
   ep499 chosen as start model for step4

4. 800 epochs, end-lambda 0.7, skip 24
   0dd1cebea57 dataset official-stockfish#4606
   ep599 chosen as start model for step5

5. 800 epochs, end-lambda 0.7, skip 28
   same dataset as step4
   ep619 became nn-1b951f8b449d.nnue

For the final step5 training:

python3 easy_train.py \
  --experiment-name L1-2048-S5-sameData-sk28-S4-0dd1cebea57-shuffled-S3-leela96-dfrc99-v2-T80dectofeb-sk20-mar-v6-T77decT78janfebT79apr-sk20-S2-LeelaFarseerT78T79T80-ep399-S1-UHOx2-wIsRight-multinet-dfrc-n5000-largeGensfen-d9 \
  --training-dataset /data/leela96-dfrc99-T60novdec-v2-T80juntonovjanfebT79aprmayT78jantosepT77dec-v6dd-T80apr.binpack \
  --early-fen-skipping 28 \
  --nnue-pytorch-branch linrock/nnue-pytorch/misc-fixes-L1-2048 \
  --engine-test-branch linrock/Stockfish/L1-2048 \
  --start-from-engine-test-net False \
  --start-from-model /data/experiments/experiment_L1-2048-S4-0dd1cebea57-shuffled-S3-leela96-dfrc99-v2-T80dectofeb-sk20-mar-v6-T77decT78janfebT79apr-sk20-S2-LeelaFarseerT78T79T80-ep399-S1-UHOx2-wIsRight-multinet-dfrc-n5000-largeGensfen-d9/training/run_0/nn-epoch599.nnue
  --max_epoch 800 \
  --lr 4.375e-4 \
  --gamma 0.995 \
  --start-lambda 1.0 \
  --end-lambda 0.7 \
  --tui False \
  --seed $RANDOM \
  --gpus 0

SF training data components for the step1 dataset:
https://drive.google.com/drive/folders/1yLCEmioC3Xx9KQr4T7uB6GnLm5icAYGU

Leela training data for steps 2-5 can be found at:
https://robotmoon.com/nnue-training-data/

Due to larger L1 size and slower inference, the speed penalty loses elo
at STC. Measurements from 100 bench runs at depth 13 with x86-64-modern
on Intel Core i5-1038NG7 2.00GHz:

sf_base =  1240730  +/-   3443 (95%)
sf_test =  1153341  +/-   2832 (95%)
diff    =   -87388  +/-   1616 (95%)
speedup = -7.04330% +/- 0.130% (95%)

Local elo at 25k nodes per move (vs. L1-1536 nn-fdc1d0fe6455.nnue):
nn-epoch619.nnue : 21.1 +/- 3.2

Failed STC:
https://tests.stockfishchess.org/tests/view/6498ee93dc7002ce609cf979
LLR: -2.95 (-2.94,2.94) <0.00,2.00>
Total: 11680 W: 3058 L: 3299 D: 5323
Ptnml(0-2): 44, 1422, 3149, 1181, 44

LTC:
https://tests.stockfishchess.org/tests/view/649b32f5dc7002ce609d20cf
Elo: 0.68 ± 1.5 (95%) LOS: 80.5%
Total: 40000 W: 10887 L: 10809 D: 18304
Ptnml(0-2): 36, 3938, 11958, 4048, 20
nElo: 1.50 ± 3.4 (95%) PairsRatio: 1.02

Passed VLTC 180+1.8:
https://tests.stockfishchess.org/tests/view/64992b43dc7002ce609cfd20
LLR: 3.06 (-2.94,2.94) <0.00,2.00>
Total: 38086 W: 10612 L: 10338 D: 17136
Ptnml(0-2): 9, 3316, 12115, 3598, 5

Passed VLTC SMP 60+0.6 th 8:
https://tests.stockfishchess.org/tests/view/649a21fedc7002ce609d0c7d
LLR: 2.95 (-2.94,2.94) <0.50,2.50>
Total: 38936 W: 11091 L: 10820 D: 17025
Ptnml(0-2): 1, 2948, 13305, 3207, 7

closes official-stockfish#4646

Bench: 2505168
linrock added a commit to linrock/Stockfish that referenced this pull request Jul 6, 2023
This was a later epoch from the same experiment that led to the
previous master net. After training, it was prepared the same way:

1. greedy permuting L1 weights with official-stockfish#4620
2. leb128 compression with official-stockfish/nnue-pytorch#251
3. greedy 2- and 3- cycle permuting with official-stockfish#4640

Local elo at 25k nodes per move (vs. L1-1536 nn-fdc1d0fe6455.nnue):
nn-epoch739.nnue : 20.2 +/- 1.7

Passed STC:
https://tests.stockfishchess.org/tests/view/64a050b33ee09aa549c4e4c8
LLR: 2.95 (-2.94,2.94) <0.00,2.00>
Total: 195552 W: 49977 L: 49430 D: 96145
Ptnml(0-2): 556, 22775, 50607, 23242, 596

Passed LTC:
https://tests.stockfishchess.org/tests/view/64a127bd3ee09aa549c4f60c
LLR: 2.94 (-2.94,2.94) <0.50,2.50>
Total: 235452 W: 60327 L: 59609 D: 115516
Ptnml(0-2): 119, 25173, 66426, 25887, 121

bench 2427629
vondele pushed a commit to vondele/Stockfish that referenced this pull request Jul 6, 2023
This was a later epoch from the same experiment that led to the
previous master net. After training, it was prepared the same way:

1. greedy permuting L1 weights with official-stockfish#4620
2. leb128 compression with official-stockfish/nnue-pytorch#251
3. greedy 2- and 3- cycle permuting with official-stockfish#4640

Local elo at 25k nodes per move (vs. L1-1536 nn-fdc1d0fe6455.nnue):
nn-epoch739.nnue : 20.2 +/- 1.7

Passed STC:
https://tests.stockfishchess.org/tests/view/64a050b33ee09aa549c4e4c8
LLR: 2.95 (-2.94,2.94) <0.00,2.00>
Total: 195552 W: 49977 L: 49430 D: 96145
Ptnml(0-2): 556, 22775, 50607, 23242, 596

Passed LTC:
https://tests.stockfishchess.org/tests/view/64a127bd3ee09aa549c4f60c
LLR: 2.94 (-2.94,2.94) <0.50,2.50>
Total: 235452 W: 60327 L: 59609 D: 115516
Ptnml(0-2): 119, 25173, 66426, 25887, 121

bench 2427629
vondele pushed a commit to vondele/Stockfish that referenced this pull request Jul 6, 2023
This was a later epoch from the same experiment that led to the
previous master net. After training, it was prepared the same way:

1. greedy permuting L1 weights with official-stockfish#4620
2. leb128 compression with official-stockfish/nnue-pytorch#251
3. greedy 2- and 3- cycle permuting with official-stockfish#4640

Local elo at 25k nodes per move (vs. L1-1536 nn-fdc1d0fe6455.nnue):
nn-epoch739.nnue : 20.2 +/- 1.7

Passed STC:
https://tests.stockfishchess.org/tests/view/64a050b33ee09aa549c4e4c8
LLR: 2.95 (-2.94,2.94) <0.00,2.00>
Total: 195552 W: 49977 L: 49430 D: 96145
Ptnml(0-2): 556, 22775, 50607, 23242, 596

Passed LTC:
https://tests.stockfishchess.org/tests/view/64a127bd3ee09aa549c4f60c
LLR: 2.94 (-2.94,2.94) <0.50,2.50>
Total: 235452 W: 60327 L: 59609 D: 115516
Ptnml(0-2): 119, 25173, 66426, 25887, 121

closes official-stockfish#4666

bench 2427629
Zerbinati added a commit to Zerbinati/SugaR-XPrO that referenced this pull request Jul 9, 2023
Creating this net involved:
- a 5-step training process from scratch
- greedy permuting L1 weights with #4620
- leb128 compression with official-stockfish/nnue-pytorch#251
- greedy 2- and 3- cycle permuting with #4640

The 5 training steps were:

1. 400 epochs, lambda 1.0, lr 9.75e-4
   UHOx2-wIsRight-multinet-dfrc-n5000-largeGensfen-d9.binpack (178G)
     nodes5000pv2_UHO.binpack
     data_pv-2_diff-100_nodes-5000.binpack
     wrongIsRight_nodes5000pv2.binpack
     multinet_pv-2_diff-100_nodes-5000.binpack
     dfrc_n5000.binpack
     large_gensfen_multipvdiff_100_d9.binpack
   ep399 chosen as start model for step2

2. 800 epochs, end-lambda 0.75, skip 16
   LeelaFarseer-T78juntoaugT79marT80dec.binpack (141G)
     T60T70wIsRightFarseerT60T74T75T76.binpack
     test78-junjulaug2022-16tb7p.no-db.min.binpack
     test79-mar2022-16tb7p.no-db.min.binpack
     test80-dec2022-16tb7p.no-db.min.binpack
   ep559 chosen as start model for step3

3. 800 epochs, end-lambda 0.725, skip 20
   leela96-dfrc99-v2-T80dectofeb-sk20-mar-v6-T77decT78janfebT79apr.binpack (223G)
     leela96-filt-v2.min.binpack
     dfrc99-16tb7p-eval-filt-v2.min.binpack
     test80-dec2022-16tb7p-filter-v6-sk20.min-mar2023.binpack
     test80-jan2023-16tb7p-filter-v6-sk20.min-mar2023.binpack
     test80-feb2023-16tb7p-filter-v6-sk20.min-mar2023.binpack
     test80-mar2023-2tb7p-filter-v6.min.binpack
     test77-dec2021-16tb7p.no-db.min.binpack
     test78-janfeb2022-16tb7p.no-db.min.binpack
     test79-apr2022-16tb7p.no-db.min.binpack
   ep499 chosen as start model for step4

4. 800 epochs, end-lambda 0.7, skip 24
   0dd1cebea57 dataset #4606
   ep599 chosen as start model for step5

5. 800 epochs, end-lambda 0.7, skip 28
   same dataset as step4
   ep619 became nn-1b951f8b449d.nnue

For the final step5 training:

python3 easy_train.py \
  --experiment-name L1-2048-S5-sameData-sk28-S4-0dd1cebea57-shuffled-S3-leela96-dfrc99-v2-T80dectofeb-sk20-mar-v6-T77decT78janfebT79apr-sk20-S2-LeelaFarseerT78T79T80-ep399-S1-UHOx2-wIsRight-multinet-dfrc-n5000-largeGensfen-d9 \
  --training-dataset /data/leela96-dfrc99-T60novdec-v2-T80juntonovjanfebT79aprmayT78jantosepT77dec-v6dd-T80apr.binpack \
  --early-fen-skipping 28 \
  --nnue-pytorch-branch linrock/nnue-pytorch/misc-fixes-L1-2048 \
  --engine-test-branch linrock/Stockfish/L1-2048 \
  --start-from-engine-test-net False \
  --start-from-model /data/experiments/experiment_L1-2048-S4-0dd1cebea57-shuffled-S3-leela96-dfrc99-v2-T80dectofeb-sk20-mar-v6-T77decT78janfebT79apr-sk20-S2-LeelaFarseerT78T79T80-ep399-S1-UHOx2-wIsRight-multinet-dfrc-n5000-largeGensfen-d9/training/run_0/nn-epoch599.nnue
  --max_epoch 800 \
  --lr 4.375e-4 \
  --gamma 0.995 \
  --start-lambda 1.0 \
  --end-lambda 0.7 \
  --tui False \
  --seed $RANDOM \
  --gpus 0

SF training data components for the step1 dataset:
https://drive.google.com/drive/folders/1yLCEmioC3Xx9KQr4T7uB6GnLm5icAYGU

Leela training data for steps 2-5 can be found at:
https://robotmoon.com/nnue-training-data/

Due to larger L1 size and slower inference, the speed penalty loses elo
at STC. Measurements from 100 bench runs at depth 13 with x86-64-modern
on Intel Core i5-1038NG7 2.00GHz:

sf_base =  1240730  +/-   3443 (95%)
sf_test =  1153341  +/-   2832 (95%)
diff    =   -87388  +/-   1616 (95%)
speedup = -7.04330% +/- 0.130% (95%)

Local elo at 25k nodes per move (vs. L1-1536 nn-fdc1d0fe6455.nnue):
nn-epoch619.nnue : 21.1 +/- 3.2

Failed STC:
https://tests.stockfishchess.org/tests/view/6498ee93dc7002ce609cf979
LLR: -2.95 (-2.94,2.94) <0.00,2.00>
Total: 11680 W: 3058 L: 3299 D: 5323
Ptnml(0-2): 44, 1422, 3149, 1181, 44

LTC:
https://tests.stockfishchess.org/tests/view/649b32f5dc7002ce609d20cf
Elo: 0.68 ± 1.5 (95%) LOS: 80.5%
Total: 40000 W: 10887 L: 10809 D: 18304
Ptnml(0-2): 36, 3938, 11958, 4048, 20
nElo: 1.50 ± 3.4 (95%) PairsRatio: 1.02

Passed VLTC 180+1.8:
https://tests.stockfishchess.org/tests/view/64992b43dc7002ce609cfd20
LLR: 3.06 (-2.94,2.94) <0.00,2.00>
Total: 38086 W: 10612 L: 10338 D: 17136
Ptnml(0-2): 9, 3316, 12115, 3598, 5

Passed VLTC SMP 60+0.6 th 8:
https://tests.stockfishchess.org/tests/view/649a21fedc7002ce609d0c7d
LLR: 2.95 (-2.94,2.94) <0.50,2.50>
Total: 38936 W: 11091 L: 10820 D: 17025
Ptnml(0-2): 1, 2948, 13305, 3207, 7

closes #4646

Bench: 2505168
 master
 stockfish-dev-20230706-e699fee5
@linrock
@vondele
linrock authored
Zerbinati added a commit to Zerbinati/SugaR-XPrO that referenced this pull request Jul 9, 2023
This was a later epoch from the same experiment that led to the
previous master net. After training, it was prepared the same way:

1. greedy permuting L1 weights with #4620
2. leb128 compression with official-stockfish/nnue-pytorch#251
3. greedy 2- and 3- cycle permuting with #4640

Local elo at 25k nodes per move (vs. L1-1536 nn-fdc1d0fe6455.nnue):
nn-epoch739.nnue : 20.2 +/- 1.7

Passed STC:
https://tests.stockfishchess.org/tests/view/64a050b33ee09aa549c4e4c8
LLR: 2.95 (-2.94,2.94) <0.00,2.00>
Total: 195552 W: 49977 L: 49430 D: 96145
Ptnml(0-2): 556, 22775, 50607, 23242, 596

Passed LTC:
https://tests.stockfishchess.org/tests/view/64a127bd3ee09aa549c4f60c
LLR: 2.94 (-2.94,2.94) <0.50,2.50>
Total: 235452 W: 60327 L: 59609 D: 115516
Ptnml(0-2): 119, 25173, 66426, 25887, 121

closes #4666

bench 2427629
 master
 stockfish-dev-20230706-e699fee5
@linrock
@vondele
linrock authored
Sign up for free to join this conversation on GitHub. Already have an account? Sign in to comment
Labels
None yet
Projects
None yet
Development

Successfully merging this pull request may close these issues.

2 participants