
OpenXR Actions And
Spaces APIs In O3DE

Background, History and Developer’s Tutorial

Galib F. Arrieta (galibzon@github, lumbermixalot@github, galibzon@discord)
1

FYI
This presentation is about the implementation of two aspects of the OpenXR spec
in O3DE:

1. Spaces -
https://registry.khronos.org/OpenXR/specs/1.0/html/xrspec.html#spaces

2. Input and Haptics -
https://registry.khronos.org/OpenXR/specs/1.0/html/xrspec.html#input

2

https://registry.khronos.org/OpenXR/specs/1.0/html/xrspec.html#spaces
https://registry.khronos.org/OpenXR/specs/1.0/html/xrspec.html#spaces
https://registry.khronos.org/OpenXR/specs/1.0/html/xrspec.html#input
https://registry.khronos.org/OpenXR/specs/1.0/html/xrspec.html#input

OpenXR Spaces - Background
In simple terms, an OpenXR Space is just a Frame Of Reference (aka Anchor) encoded
as a tuple: Name(string) + Transform (AZ::Transform).

There are two kinds of spaces in OpenXR: Reference Spaces and Action Spaces.
Within the OpenXR API, all spaces are identified with the same opaque handle type,
XrSpace. For O3DE developers, an OpenXR Space is identified by its name (string).

Reference Spaces are used by applications to bootstrap their spatial reasoning, while
Action Spaces are used when reading user input related with Hands or Grip orientation.

3

OpenXR Well-Known Reference Spaces (1)
OpenXR defines a set of well-known reference spaces that applications use to
bootstrap their spatial reasoning. Each reference space has a well-defined
meaning, which establishes where its origin is positioned and how its axes are
oriented.

1. VIEW: Defines the current pose of the Head Centroid (for Stereo systems).
For XR applications running on a phone this could be the phone location +
orientation.

2. LOCAL: Typically centered around the initial location and orientation upon
system reset.

3. STAGE. Typically represents the real world user-defined Squared Boundary
that defines the safe-to-play area.

4

OpenXR Well-Known Reference Spaces (2)

5

REMARK: In O3DE, The OpenXR Space API conforms to the O3DE Axis
Convention: X+ is right, Z+ is Up, Y+ is Forward.

Left eye Right eye

Headset Back

Headset Front

Y+ forward

Headset Centroid. This is the origin
of the View Reference Space

VIEW LOCAL
Y+ f

orw
ard

X+ r
igh

t

(0,0,0)

Whatever was the orientation of the device upon
reset becomes the (0,0,0) of the LOCAL
reference space

X

Z
Y

STAGE

(0, 0, 0)

You can only query the location of a Reference Space
with respect to another Reference Space.

6

Left eye Right eye

Headset Back

Headset Front

Y+ forward

VIEW
LOCAL

Y+ f
orw

ard

X+ r
igh

t

X

Z
Y

STAGE

(0, 0, 0)
The user was here
upon Session reset

After some arbitrary length
of time later, the user is now
located here.

You can only query the location of a Reference Space
with respect to another Reference Space.

7

Left eye Right eye

Headset Back

Headset Front

Y+ forward

VIEW
LOCAL

Y+ f
orw

ard

X+ r
igh

t

X

Z
Y

STAGE

(0, 0, 0)
The user was here
upon Session reset

local outcome = OpenXRReferenceSpaces.GetReferenceSpacePose(“View”, "Local")

local outcome = OpenXRReferenceSpaces.GetReferenceSpacePose(“View”, "Stage")

Returns a Transform that describes where is the VIEW with respect to the LOCAL space.

Returns a Transform that describes where is the VIEW with respect to the STAGE space.

You can create your own Reference Spaces (aka
Anchors).

8

Left eye Right eye

Headset Back

Headset Front

Y+ forward

VIEW

LOCAL

Y+ f
orw

ard

X+ r
igh

t

X

Z
Y

STAGE

(0, 0, 0)

local newSpaceName = "RedFlag"
local tm = Transform.CreateTranslation(Vector3(-5.0, -2.0, 0.0))
local outcome =
OpenXRReferenceSpaces.AddReferenceSpace(OpenXRReferenceSpaces.ReferenceSpaceIdStage,
newSpaceName, tm)

X

Z

Y

local newSpaceName = "BlueFlag"
local tm = Transform.CreateTranslation(Vector3(-3.0, 5.0, 0.0))
local outcome =
OpenXRReferenceSpaces.AddReferenceSpace(OpenXRReferenceSpaces.ReferenceSpaceIdView,
newSpaceName, tm)

X

Z

Y

You can only query the location of a Reference Space
with respect to another Reference Space.

9

Left eye Right eye

Headset Back

Headset Front

Y+ forward

VIEW

LOCAL

Y+ f
orw

ard

X+ r
igh

t

X

Z
Y

STAGE

(0, 0, 0)

X

Z

Y

X

Z

Y

local outcome = OpenXRReferenceSpaces.GetReferenceSpacePose(“RedFlag”, "View")

Returns a Transform that describes where is the “RedFlag” with respect to the “View” space.

local outcome = OpenXRReferenceSpaces.GetReferenceSpacePose(“View”, "BlueFlag")

Returns a Transform that describes where is the “View” with respect to the “BlueFlag” space.

Where is the O3DE API for OpenXR Spaces?

OpenXRVk::OpenXRReferenceSpacesInterface (C++)

The C++ API is exposed in the BehaviorContext (Lua, ScriptCanvas, etc) in:
OpenXRVkBehaviorReflection.cpp (“OpenXRReferenceSpaces”)

An example Lua script is available at:
xr_spaces_api_test.lua

https://github.com/o3de/o3de-extras/blob/59c699169b0fb49e1097dfeb03939edc59d4cc9f/Gems/OpenXRVk/Code/Include/OpenXRVk/OpenXRVkReferenceSpacesInterface.h
https://github.com/o3de/o3de-extras/blob/59c699169b0fb49e1097dfeb03939edc59d4cc9f/Gems/OpenXRVk/Code/Source/OpenXRVkBehaviorReflection.cpp#L385
https://github.com/o3de/o3de-extras/blob/59c699169b0fb49e1097dfeb03939edc59d4cc9f/Gems/OpenXRVk/Assets/OpenXRVk/Scripts/xr_spaces_api_test.lua

Inputs And Haptics - Background
OpenXR presents a new paradigm into how applications would manage user I/O.

For the last 20+ years hardware manufacturers and software developers have
been building interactive applications according to the USB/Bluetooth HID, Human
Interface Device, standard. The HID standard, and some API abstractions like
Linux EVDEV, defines a set of devices like Gamepad, Keyboard, Mouse, etc and
their expected buttons, trackpads, etc.

Bottom line, everybody had agreed to a well defined contract.
11

Inputs And Haptics - Background continued…
This well defined I/O contract, has a few limitations:

1. It was not possible for hardware manufacturers to design new hardware
interfaces that provided complex user input data like Vector or Quaternion
data. E.g. Location and orientation of the user hands, etc.

2. The standard is basically “written in stone”, because the button codes are
shipped within OS drivers and low level APIs like EVDEV. Which means
modifying the standard would need to be propagated around all HID library
headers, etc.

12

The OpenXR Way
Regarding user I/O the key tenets for OpenXR are flexibility and extensibility. The
API for querying the available hardware is now in user space, and it works in
terms of strings. These strings look like UNIX directory paths.

Each equipment vendor advertise their “paths”, and applications would simply
declare what “paths” are supported.

 This approach opens the possibility of defining user I/O support in a data
driven way, unlike hard-coded scan codes in OS drivers.

13

Let’s walk through an example
● Let's suppose you are developing an application where the user will be able

to throw objects.
● Furthermore, let's assume that this action can be represented with a boolean

state.

14

bool shouldThrow = GetBooleanActionState("throw");

if (shouldThrow) {

 Throw();

}

Example continued…
The first question you may be asking right now is how to map "throw" to a
hardware button?

In OpenXR, you define your application I/O requirements as list of actions, where
each action has 1-to-many relationship with a set of hardware buttons
identifiable by strings:

15

● “Y” button of "Oculus Touch" “Left Hand” Controller.
● “B” button of "Oculus Touch" “Right Hand” Controller.
● “Grip” button of "HTC Vive" “Left Hand” Controller
● “Grip” button of "HTC Vive" “Right Hand” Controller
● “A” button of "Valve Index" “Left Hand” Controller
● “A” button of "Valve Index" “Right Hand” Controller

The action named
"throw"

“Y button” of "Oculus Touch" “Left Hand” Controller.

Breaking down the parts of a hardware button description in OpenXR

16

Component Path
Interaction Profile

User Path

Interaction Profile:
Name: “Oculus Touch”
Path: "/interaction_profiles/oculus/touch_controller"

User Path:
Name: “Left Hand”
Path: "/user/hand/left"

Component Path:
Name: “Y button”
Path: "/input/y/click"

https://registry.khronos.org/OpenXR/specs/1.0/html/xrspec.html#semantic-path-interaction-profiles

The Name is not important, and each
application/engine can choose an
arbitrary name to present to the user.

What matters is the Path. Each
hardware vendor declares and publishes
their paths for all the of their Interaction
Profiles. These paths will become the
unique identifiers for the low level
OpenXR library.

https://registry.khronos.org/OpenXR/specs/1.0/html/xrspec.html#semantic-path-interaction-profiles

The Interaction Profile
From the point of view of XR/VR hardware vendors, an Interaction Profile is an
abstraction that represents a family of headsets and controllers with common I/O
functionality. For example, for Meta™, the Oculus Touch Controller profile,
uniquely identifiable by its path: /interaction_profiles/oculus/touch_controller, supports the
following devices:

● Quest 1
● Quest 2
● Quest Pro
● Quest 3

17

https://registry.khronos.org/OpenXR/specs/1.0/html/xrspec.html#
_oculus_touch_controller_profile

https://registry.khronos.org/OpenXR/specs/1.0/html/xrspec.html#_oculus_touch_controller_profile
https://registry.khronos.org/OpenXR/specs/1.0/html/xrspec.html#_oculus_touch_controller_profile

The User Path
Typically the User Path represents the controllers, joysticks or user hands
supported under a particular Interaction Profile. The two most common User
Paths supported by most Interaction Profiles are:

1. /user/hand/left

2. /user/hand/right

Not always it represents a hand or arm, for example the Microsoft Xbox Controller
Profile, only supports one User Path, known as “/user/gamepad”.

18

The Component Path
To put it simply, a Component Path represents a button available in a particular
User Path (aka Controller, Joystick or Hand).

Some Component Paths are common to all User Paths supported by an
Interaction Profile. For example, the Component Path “/input/trigger/value” is
supported by all User Paths (“/user/hand/left” and “/user/hand/right”) of the Oculus
Touch Controller profile.

Some Component Paths are unique to an User Path supported by an
Interaction Profile. For example, the Component Path “/input/x/click” is supported
only by the User Path “/user/hand/left” of the Oculus Touch Controller profile.

19

Interaction Profiles In O3DE
An asset file with extension “*.xrprofiles”, contains All Interaction Profiles
supported by any given O3DE-based Application. As new hardware is introduced
in the future, the O3DE developer only needs to add more data to the same asset
file. No need to recompile the engine.

The OpenXRVk Gem ships with an Interaction Profiles Asset under the relative
path: “Assets/OpenXRVk/system.xrprofiles”.

Most developers can leverage this file or make a copy of it into their own projects.
The key takeaway is that this file changes very rarely. It should only change
when new Interaction Profiles are introduced into the market.

20

https://github.com/o3de/o3de-extras/blob/59c699169b0fb49e1097dfeb03939edc59d4cc9f/Gems/OpenXRVk/Assets/OpenXRVk/system.xrprofiles

Editing An Interaction Profiles Asset In O3DE
To create or edit an Interaction Profiles asset, the OpenXRVk Gem conveniently exposes this asset
type under the Asset Editor. The Asset Editor panel is available in the Editor from the menu:
Tools -> Asset Editor

21

Breaking Down system.xrprofiles [OpenXRVk Gem] (1)

22

So far, contains two Interaction Profiles:
● Kronos Simple
● Oculus Touch

Feel free to add or more!

Breaking Down system.xrprofiles [OpenXRVk Gem] (2)

23

The name “Oculus Touch” is arbitrary,
on the other hand, its path conforms to
the OpenXR Spec:
https://registry.khronos.org/OpenXR/specs/1.0/html/xrspec.html#_
oculus_touch_controller_profile

Per the spec, it contains only two User
Paths. In this asset, their names are
arbitrary “(L)” and “(R)”, but their paths
come from the spec.

https://registry.khronos.org/OpenXR/specs/1.0/html/xrspec.html#_oculus_touch_controller_profile
https://registry.khronos.org/OpenXR/specs/1.0/html/xrspec.html#_oculus_touch_controller_profile

Breaking Down system.xrprofiles [OpenXRVk Gem] (3)

24

Some Component Paths (aka buttons) are
unique to a particular User Path. Examples:
● The “X Click” button is unique to the

“(L)” User Path.
● The “A Click” button is unique to the

“(R)” User Path.

Some Component Paths are common to
both User Paths.

As mentioned already, within this asset,
all of the names are arbitrary, but the
paths must conform to the OpenXR
spec:
https://registry.khronos.org/OpenXR/specs/1.0/html/xrspec.html#_
oculus_touch_controller_profile

https://registry.khronos.org/OpenXR/specs/1.0/html/xrspec.html#_oculus_touch_controller_profile
https://registry.khronos.org/OpenXR/specs/1.0/html/xrspec.html#_oculus_touch_controller_profile

Do you remember our starting example?

So far, we covered the right side of the picture… The list of available buttons
that the application will be compatible with. We learned that the data listed here
comes from an Interaction Profiles asset. E.g.system.xrprofiles.

Now we’ll talk about the left side of the picture… The bespoke actions that the
application will use to define the gameplay.

25

● “Y” button of "Oculus Touch" “Left Hand” Controller.
● “B” button of "Oculus Touch" “Right Hand” Controller.
● “Grip” button of "HTC Vive" “Left Hand” Controller
● “Grip” button of "HTC Vive" “Right Hand” Controller
● “A” button of "Valve Index" “Left Hand” Controller
● “A” button of "Valve Index" “Right Hand” Controller

The action named
"throw"

https://github.com/o3de/o3de-extras/blob/59c699169b0fb49e1097dfeb03939edc59d4cc9f/Gems/OpenXRVk/Assets/OpenXRVk/system.xrprofiles

OpenXR Action Sets and Actions in O3DE.
In OpenXR not only you work with custom Actions, but you must group your actions into Action Sets.

Action Sets are immutable but they can be activated and deactivated at runtime. They also have a
priority that will serve as tie breaker when several actions are mapped to the same buttons.

Here is an example of three Action Sets

26

Action Set
Name: “ui”
Priority: 1
Actions:

● “select”
● “move_cursor”
● “cancel”

Action Set
Name: “gameplay”
Priority: 2
Actions:

● “throw”
● “jump”
● “grab”
● “kick”

Action Set
Name: “game_state”
Priority: 2
Actions:

● “pause_resume”
● “quit”

The Action Sets Asset
In O3DE, you define all Action Sets (and their Actions) in an asset with extension *.xractions.

By default, the OpenXRVk Gem will load the Action Sets asset located at:
“OpenXRVk/default.xractions”.

Applications can override which Action Sets asset to load with the registry key:
"/O3DE/Atom/OpenXR/ActionSetsAsset".

Example for a project called AdventureVR. “AdventureVR/Registry/adventurevr.setreg”:

27

{
 "O3DE": {
 "Atom": {
 "OpenXR": {
 "ActionSetsAsset": "assets/adventurevr.xractions"
 }
 }
 }
}

https://github.com/o3de/o3de-extras/blob/59c699169b0fb49e1097dfeb03939edc59d4cc9f/Gems/OpenXRVk/Assets/OpenXRVk/default.xractions
https://github.com/o3de/o3de-extras/blob/59c699169b0fb49e1097dfeb03939edc59d4cc9f/Gems/OpenXRVk/Code/Source/OpenXRVkActionsManager.cpp#L69

Editing An Action Sets Asset In O3DE
To create or edit an Action Sets asset, the OpenXRVk Gem conveniently exposes this asset type
under the Asset Editor. The Asset Editor panel is available in the Editor from the menu: Tools
-> Asset Editor

28

Breaking Down default.xractions [OpenXRVk Gem] (1)
Must reference an Interaction Profiles asset.
In this case it uses system.xrprofiles

29

So far, only one Action Set is defined in this
asset. Its name is “main_action_set”

Breaking Down default.xractions [OpenXRVk Gem] (2)

30

“main_action_set” contains 5 actions:

1. “move_frontways”
2. “move_sideways”
3. “shift_yaw_rotate”
4. “move_up”
5. “move_down”

Breaking Down default.xractions [OpenXRVk Gem] (3)

31

“move_frontways” contains only 1
action path.

When defining the Action Path, the
Combo Boxes are populated with data
from the referenced Interaction Profiles
asset.

Breaking Down default.xractions [OpenXRVk Gem] (4)

32

“move_up” contains 2 action paths.

Both action paths refer to different buttons
under the same Interaction Profile.

REMARK 1: Other buttons under other
Interaction Profiles could have been added,
which would make the application compatible
with other VR equipment.

REMARK 2: We can only add action paths
with data that comes from the referenced
system.xrprofiles.

Runtime Example With Lua (1)
O3DE Applications Will Use the following API to work with OpenXR Actions:
OpenXRVkActionsInterface.h
using OpenXRActionsInterface = AZ::Interface<IOpenXRActions>;

OpenXRActionsInterface is exposed into the Behavior Context (For Lua,
ScriptCanvas, etc) in this file: OpenXRVkBehaviorReflection.cpp ("OpenXRActions")

An example Lua script is provided at this location: xr_camera_move.lua

REMARK: This Lua script can be used as a replacement of the C++ component called
XRCameraMovementComponent.cpp

33

https://github.com/o3de/o3de-extras/blob/59c699169b0fb49e1097dfeb03939edc59d4cc9f/Gems/OpenXRVk/Code/Include/OpenXRVk/OpenXRVkActionsInterface.h
https://github.com/o3de/o3de-extras/blob/59c699169b0fb49e1097dfeb03939edc59d4cc9f/Gems/OpenXRVk/Code/Source/OpenXRVkBehaviorReflection.cpp#L409
https://github.com/o3de/o3de-extras/blob/59c699169b0fb49e1097dfeb03939edc59d4cc9f/Gems/OpenXRVk/Assets/OpenXRVk/Scripts/xr_camera_move.lua
https://github.com/o3de/o3de-extras/blob/59c699169b0fb49e1097dfeb03939edc59d4cc9f/Gems/OpenXRVk/Code/Source/XRCameraMovementComponent.cpp

Runtime Example With Lua (2)
function xr_camera_move:OnActivate()
 -- OPTIONAL: Cache all action handles
 self._moveFrontwaysHandle = OpenXRActions.GetActionHandle("main_action_set", "move_frontways")
 self._moveUpHandle = OpenXRActions.GetActionHandle("main_action_set", "move_up")
end

34

function xr_camera_move:OnTick(deltaTime, timePoint)
 self._cameraMovementStates = Vector3(0.0, 0.0, 0.0)

 local outcome = OpenXRActions.GetActionStateFloat(self._moveFrontwaysHandle)
 if outcome:IsSuccess() then -- Typically, a failed outcome means the joystick is resting.
 self._cameraMovementStates.y = outcome:GetValue()
 end

 outcome = OpenXRActions.GetActionStateBoolean(self._moveUpHandle)
 if outcome:IsSuccess() then -- Typically, a failed outcome means the joystick is resting.
 if outcome:GetValue() then
 self._cameraMovementStates.z = 1.0
 end
 end
end

Summary: OpenXR Actions In O3DE
1. Very rarely: Extend system.xrprofiles, or create your own using the Asset

Editor. Only required when adding new hardware support.

2. Once per application: Define your own *.xractions file and specify it under
the Registry Key: "/O3DE/Atom/OpenXR/ActionSetsAsset".

3. At runtime, for C++, use OpenXRActionsInterface. For Lua, use the API exposed
in OpenXRVkBehaviorReflection.cpp.

35

https://github.com/o3de/o3de-extras/blob/59c699169b0fb49e1097dfeb03939edc59d4cc9f/Gems/OpenXRVk/Code/Source/OpenXRVkActionsManager.cpp#L69

OpenXR Actions And Spaces APIs In O3DE

The End

Questions?

Galib F. Arrieta (galibzon@github, lumbermixalot@github, galibzon@discord)

