-
Notifications
You must be signed in to change notification settings - Fork 33
/
Copy pathlucene_search.py
266 lines (209 loc) · 9.6 KB
/
lucene_search.py
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
266
# -*- coding: utf-8 -*-
'''
Use Lucene to retrieve candidate documents for given a query.
'''
import shutil
import os
import lucene
import parameters as prm
import utils
import itertools
from java.nio.file import Paths
from org.apache.lucene.analysis.standard import StandardAnalyzer
from org.apache.lucene.document import Document, Field, FieldType
from org.apache.lucene.index import FieldInfo, DirectoryReader, IndexWriter, IndexWriterConfig, IndexOptions
from org.apache.lucene.store import SimpleFSDirectory, NIOFSDirectory, MMapDirectory
from org.apache.lucene.util import Version
from org.apache.lucene.search import IndexSearcher, MatchAllDocsQuery, BooleanQuery
from org.apache.lucene.queryparser.classic import QueryParser
import time
from collections import OrderedDict, defaultdict
from multiprocessing.pool import ThreadPool
import Queue
import math
from nltk.tokenize import wordpunct_tokenize
import cPickle as pkl
class LuceneSearch():
def __init__(self):
self.env = lucene.initVM(initialheap='28g', maxheap='28g', vmargs=['-Djava.awt.headless=true'])
self.vocab = None
BooleanQuery.setMaxClauseCount(2048)
if not os.path.exists(prm.index_folder):
print 'Creating index at', prm.index_folder
if prm.docs_path == prm.docs_path_term:
add_terms = True
else:
add_terms = False
self.create_index(prm.index_folder, prm.docs_path, add_terms)
if prm.local_index_folder:
print 'copying index from', prm.index_folder, 'to', prm.local_index_folder
if os.path.exists(prm.local_index_folder):
print 'Folder', prm.local_index_folder, 'already exists! Doing nothing.'
else:
shutil.copytree(prm.index_folder, prm.local_index_folder)
self.index_folder = prm.local_index_folder
else:
self.index_folder = prm.index_folder
fsDir = MMapDirectory(Paths.get(prm.index_folder))
self.searcher = IndexSearcher(DirectoryReader.open(fsDir))
if prm.docs_path != prm.docs_path_term:
if not os.path.exists(prm.index_folder_term):
print 'Creating index at', prm.index_folder_term
self.create_index(prm.index_folder_term, prm.docs_path_term, add_terms=True)
if prm.local_index_folder_term:
print 'copying index from', prm.index_folder_term, 'to', prm.local_index_folder_term
if os.path.exists(prm.local_index_folder_term):
print 'Folder', prm.local_index_folder_term, 'already exists! Doing nothing.'
else:
shutil.copytree(prm.index_folder_term, prm.local_index_folder_term)
self.index_folder_term = prm.local_index_folder_term
else:
self.index_folder_term = prm.index_folder_term
fsDir_term = MMapDirectory(Paths.get(prm.index_folder_term))
self.searcher_term = IndexSearcher(DirectoryReader.open(fsDir_term))
self.analyzer = StandardAnalyzer()
self.pool = ThreadPool(processes=prm.n_threads)
self.cache = {}
print 'Loading Title-ID mapping...'
self.title_id_map, self.id_title_map = self.get_title_id_map()
def get_title_id_map(self):
# get number of docs
n_docs = self.searcher.getIndexReader().numDocs()
title_id = {}
id_title = {}
query = MatchAllDocsQuery()
hits = self.searcher.search(query, n_docs)
for hit in hits.scoreDocs:
doc = self.searcher.doc(hit.doc)
idd = int(doc['id'])
title = doc['title']
title_id[title] = idd
id_title[idd] = title
return title_id, id_title
def add_doc(self, doc_id, title, txt, add_terms):
doc = Document()
txt = utils.clean(txt)
if add_terms:
txt_ = txt.lower()
words_idx, words = utils.text2idx2([txt_], self.vocab, prm.max_terms_per_doc)
words_idx = words_idx[0]
words = words[0]
doc.add(Field("id", str(doc_id), self.t1))
doc.add(Field("title", title, self.t1))
doc.add(Field("text", txt, self.t2))
if add_terms:
doc.add(Field("word_idx", ' '.join(map(str,words_idx)), self.t3))
doc.add(Field("word", '<&>'.join(words), self.t3))
self.writer.addDocument(doc)
def create_index(self, index_folder, docs_path, add_terms=False):
print 'Loading Vocab...'
if not self.vocab:
self.vocab = utils.load_vocab(prm.vocab_path, prm.n_words)
os.mkdir(index_folder)
self.t1 = FieldType()
self.t1.setStored(True)
self.t1.setIndexOptions(IndexOptions.DOCS)
self.t2 = FieldType()
self.t2.setStored(False)
self.t2.setIndexOptions(IndexOptions.DOCS_AND_FREQS)
self.t3 = FieldType()
self.t3.setStored(True)
self.t3.setIndexOptions(IndexOptions.NONE)
fsDir = MMapDirectory(Paths.get(index_folder))
writerConfig = IndexWriterConfig(StandardAnalyzer())
self.writer = IndexWriter(fsDir, writerConfig)
print "%d docs in index" % self.writer.numDocs()
print "Indexing documents..."
doc_id = 0
import corpus_hdf5
corpus = corpus_hdf5.CorpusHDF5(docs_path)
for txt in corpus.get_text_iter():
title = corpus.get_article_title(doc_id)
self.add_doc(doc_id, title, txt, add_terms)
if doc_id % 1000 == 0:
print 'indexing doc', doc_id
doc_id += 1
print "Index of %d docs..." % self.writer.numDocs()
self.writer.close()
def search_multithread(self, qs, max_cand, max_full_cand, searcher):
self.max_cand = max_cand
self.max_full_cand = max_full_cand
self.curr_searcher = searcher
out = self.pool.map(self.search_multithread_part, qs)
return out
def search_multithread_part(self, q):
if not self.env.isCurrentThreadAttached():
self.env.attachCurrentThread()
if q in self.cache:
return self.cache[q]
else:
try:
q = q.replace('AND','\\AND').replace('OR','\\OR').replace('NOT','\\NOT')
query = QueryParser("text", self.analyzer).parse(QueryParser.escape(q))
except:
print 'Unexpected error when processing query:', str(q)
print 'Using query "dummy".'
q = 'dummy'
query = QueryParser("text", self.analyzer).parse(QueryParser.escape(q))
c = OrderedDict()
hits = self.curr_searcher.search(query, self.max_cand)
for i, hit in enumerate(hits.scoreDocs):
doc = self.curr_searcher.doc(hit.doc)
if i < self.max_full_cand:
word_idx = map(int, doc['word_idx'].split(' '))
word = doc['word'].split('<&>')
else:
word_idx = []
word = []
c[int(doc['id'])] = [word_idx, word]
return c
def search_singlethread(self, qs, max_cand, max_full_cand, curr_searcher):
out = []
for q in qs:
if q in self.cache:
out.append(self.cache[q])
else:
try:
q = q.replace('AND','\\AND').replace('OR','\\OR').replace('NOT','\\NOT')
query = QueryParser("text", self.analyzer).parse(QueryParser.escape(q))
except:
print 'Unexpected error when processing query:', str(q)
print 'Using query "dummy".'
query = QueryParser("text", self.analyzer).parse(QueryParser.escape('dummy'))
c = OrderedDict()
hits = curr_searcher.search(query, max_cand)
for i, hit in enumerate(hits.scoreDocs):
doc = curr_searcher.doc(hit.doc)
if i < max_full_cand:
word_idx = map(int, doc['word_idx'].split(' '))
word = doc['word'].split('<&>')
else:
word_idx = []
word = []
c[int(doc['id'])] = [word_idx, word]
out.append(c)
return out
def get_candidates(self, qs, max_cand, max_full_cand=None, save_cache=False, extra_terms=True):
if not max_full_cand:
max_full_cand = max_cand
if prm.docs_path != prm.docs_path_term:
max_cand2 = 0
else:
max_cand2 = max_full_cand
if prm.n_threads > 1:
out = self.search_multithread(qs, max_cand, max_cand2, self.searcher)
if (prm.docs_path != prm.docs_path_term) and extra_terms:
terms = self.search_multithread(qs, max_full_cand, max_full_cand, self.searcher_term)
else:
out = self.search_singlethread(qs, max_cand, max_cand2, self.searcher)
if (prm.docs_path != prm.docs_path_term) and extra_terms:
terms = self.search_singlethread(qs, max_full_cand, max_full_cand, self.searcher_term)
if (prm.docs_path != prm.docs_path_term) and extra_terms:
for outt, termss in itertools.izip(out, terms):
for cand_id, term in itertools.izip(outt.keys()[:max_full_cand], termss.values()):
outt[cand_id] = term
if save_cache:
for q, c in itertools.izip(qs, out):
if q not in self.cache:
self.cache[q] = c
return out