GitHub CI workflows for Python code repos

[image: tjtharrison]

tjtharrison
·
5 min read
·
Jul 24, 2023
This article is going to cover a collection of GitHub workflow steps that I use to lint and ensure good code security for my Python code repositories.
The steps are going to focus on a few areas:
· Security (How secure is the code?)
· Linting (How legible is the code)
· Documentation (How easy to read is it for others using?)
We’ll now dive into each of these areas, I’ve created an example repository for this article which you can use to see all of the actions in full:

GitHub - tjtharrison/demo-python-repository: Demo repo to show CI for Python
Demo repo to show CI for Python. Contribute to tjtharrison/demo-python-repository development by creating an account on…
github.com

[image: Ein Bild, das Person, computer, Computer, Im Haus enthält.

Automatisch generierte Beschreibung]
Photo by John Schnobrich on Unsplash
Security:
There are various python specific SAST tools that you can run against your code — Though I have found the best of these to be bandit.
If bandit finds security issues in the code that it scans, it will exit with a non-zero exit code, so we can use this directly in a GitHub action to fail the workflow step if it detects any security issues.
 - name: "bandit"
 run: |
 pip3 install bandit
 bandit .

 if [[$? -eq 0]]; then
 echo "No security issues found"
 else
 echo "Security issues found"
 exit 1
 fi
It is also worth mentioning CodeQL from GitHub as a non-python specific SAST tool that you can run against your code to detect security issues. There may be some duplication between CodeQL and bandit findings so bear this in mind if you do chose to implement both.
NOTE: CodeQL is available in GitHub if your project is available publicly or you purchase GitHub advanced security for your GitHub organisation.
Here is an example CodeQL job that you can run against your python codebase to detect issues
 strategy:
 fail-fast: false
 matrix:
 language: ['python']
 steps:
 - name: Checkout repository
 uses: actions/checkout@v3
 # Initializes the CodeQL tools for scanning.
 - name: Initialize CodeQL
 uses: github/codeql-action/init@v2
 with:
 languages: ${{ matrix.language }}

 - name: Perform CodeQL Analysis
 uses: github/codeql-action/analyze@v2
 with:
 category: "/language:${{matrix.language}}"

image1.png

image2.jpeg

