-
Notifications
You must be signed in to change notification settings - Fork 5
/
infer_4d.py
392 lines (297 loc) · 17.5 KB
/
infer_4d.py
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
266
267
268
269
270
271
272
273
274
275
276
277
278
279
280
281
282
283
284
285
286
287
288
289
290
291
292
293
294
295
296
297
298
299
300
301
302
303
304
305
306
307
308
309
310
311
312
313
314
315
316
317
318
319
320
321
322
323
324
325
326
327
328
329
330
331
332
333
334
335
336
337
338
339
340
341
342
343
344
345
346
347
348
349
350
351
352
353
354
355
356
357
358
359
360
361
362
363
364
365
366
367
368
369
370
371
372
373
374
375
376
377
378
379
380
381
382
383
384
385
386
387
388
389
390
391
392
# SPDX-FileCopyrightText: Copyright (c) 2024 NVIDIA CORPORATION & AFFILIATES. All rights reserved.
# SPDX-License-Identifier: Apache-2.0
#
# Licensed under the Apache License, Version 2.0 (the "License");
# you may not use this file except in compliance with the License.
# You may obtain a copy of the License at
#
# http://www.apache.org/licenses/LICENSE-2.0
#
# Unless required by applicable law or agreed to in writing, software
# distributed under the License is distributed on an "AS IS" BASIS,
# WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
# See the License for the specific language governing permissions and
# limitations under the License.
import imageio.v3 as iio
import cv2
import numpy as np
import imageio
from copy import deepcopy
import os
import tyro
import glob
import imageio
import numpy as np
import tqdm
import torch
import torch.nn as nn
import torch.nn.functional as F
import torchvision.transforms.functional as TF
from safetensors.torch import load_file
import kiui
from kiui.cam import orbit_camera
from core.options import AllConfigs, Options
from core.models import LGM
import time
from core.utils import get_rays, grid_distortion, orbit_camera_jitter
IMAGENET_DEFAULT_MEAN = (0.485, 0.456, 0.406)
IMAGENET_DEFAULT_STD = (0.229, 0.224, 0.225)
USE_INTERPOLATION = True # set to false to disable interpolation
MAX_RUNS = 100
VIDEO_FPS = 30
opt = tyro.cli(AllConfigs)
# model
model = LGM(opt)
# resume pretrained checkpoint
if opt.resume is not None:
if opt.resume.endswith('safetensors'):
ckpt = load_file(opt.resume, device='cpu')
else:
ckpt = torch.load(opt.resume, map_location='cpu')
model.load_state_dict(ckpt, strict=False)
print(f'[INFO] Loaded checkpoint from {opt.resume}')
else:
print(f'[WARN] model randomly initialized, are you sure?')
# device
device = torch.device('cuda' if torch.cuda.is_available() else 'cpu')
model = model.half().to(device)
model.eval()
bg_color = torch.tensor([255, 255, 255], dtype=torch.float32, device="cuda") / 255.
rays_embeddings = model.prepare_default_rays(device)
rays_embeddings = torch.cat([rays_embeddings for _ in range(opt.num_frames)])
interp_opt = deepcopy(opt)
interp_opt.num_frames = 4
model_interp = LGM(interp_opt)
# resume pretrained checkpoint
if interp_opt.interpresume is not None:
if interp_opt.interpresume.endswith('safetensors'):
ckpt = load_file(interp_opt.interpresume, device='cpu')
else:
ckpt = torch.load(interp_opt.interpresume, map_location='cpu')
model_interp.load_state_dict(ckpt, strict=False)
print(f'[INFO] Loaded Interp checkpoint from {interp_opt.interpresume}')
else:
print(f'[WARN] model_interp randomly initialized, are you sure?')
# device
device = torch.device('cuda' if torch.cuda.is_available() else 'cpu')
model_interp = model_interp.half().to(device)
model_interp.eval()
interp_rays_embeddings = model_interp.prepare_default_rays(device)
interp_rays_embeddings = torch.cat([interp_rays_embeddings for _ in range(interp_opt.num_frames)])
tan_half_fov = np.tan(0.5 * np.deg2rad(opt.fovy))
proj_matrix = torch.zeros(4, 4, dtype=torch.float32, device=device)
proj_matrix[0, 0] = 1 / tan_half_fov
proj_matrix[1, 1] = 1 / tan_half_fov
proj_matrix[2, 2] = (opt.zfar + opt.znear) / (opt.zfar - opt.znear)
proj_matrix[3, 2] = - (opt.zfar * opt.znear) / (opt.zfar - opt.znear)
proj_matrix[2, 3] = 1
def interpolate_tensors(tensor):
# Extract the first and last tensors along the first dimension (B)
start_tensor = tensor[0] # shape [4, 3, 256, 256]
end_tensor = tensor[-1] # shape [4, 3, 256, 256]
tensor_interp = deepcopy(tensor)
# Iterate over the range from 1 to second-last index
for i in range(1, tensor.shape[0] - 1):
# Calculate the weight for interpolation
weight = (i - 0) / (tensor.shape[0] - 1)
# Interpolate between start_tensor and end_tensor
tensor_interp[i] = torch.lerp(start_tensor, end_tensor, weight)
return tensor_interp
def process_eval_video(frames, video_path, T, start_t=0, downsample_rate=1):
L = frames.shape[0]
vid_name =video_path.split('/')[-1].split('.')[0]
total_frames = L//downsample_rate
print(f'{start_t} / {total_frames}')
frames = [frames[x] for x in range(frames.shape[0])]
V = opt.num_input_views
img_TV = []
for t in range(T):
t += start_t
t = min(t, L//downsample_rate-1)
t*=downsample_rate
img = frames[t]
img = cv2.resize(img, (256, 256), interpolation=cv2.INTER_AREA)
img = img.astype(np.float32) / 255.0
img_V = []
for v in range(V):
img_V.append(img)
img_TV.append(np.stack(img_V, axis=0))
return np.stack(img_TV, axis=0), L//downsample_rate- start_t
def load_mv_img(name, img_dir):
img_list = []
for v in range(4):
img = kiui.read_image(os.path.join(img_dir, name + f'_{v:03d}.png'), mode='uint8')
img = cv2.resize(img, (256, 256), interpolation=cv2.INTER_AREA)
img = img / 255.
img_list.append(img)
return np.stack(img_list, axis=0)
# process function
def process(opt: Options, path):
name = os.path.splitext(os.path.basename(path))[0]
print(f'[INFO] Processing {path} --> {name}')
os.makedirs(opt.workspace, exist_ok=True)
frames = iio.imread(path)
img_dir = opt.workspace
mv_image = load_mv_img(name, img_dir)
print(iio.immeta(path))
FPS = int(iio.immeta(path)['fps'])
downsample_rate = FPS // 15 if FPS > 15 else 1 # default reconstruction fps 15
with torch.inference_mode():
with torch.autocast(device_type='cuda', dtype=torch.float16):
start_t = 0
gaussians_all_frame_all_run = []
gaussians_all_frame_all_run_w_interp = []
for run_idx in range(MAX_RUNS):
ref_video, end_t = process_eval_video(frames, path, opt.num_frames, start_t, downsample_rate=downsample_rate)
ref_video[:, 1:] = mv_image[None, 1:] # repeat
input_image = torch.from_numpy(ref_video).reshape([-1, *ref_video.shape[2:]]).permute(0, 3, 1, 2).float().to(device) # [4, 3, 256, 256]
input_image = F.interpolate(input_image, size=(opt.input_size, opt.input_size), mode='bilinear', align_corners=False)
input_image = TF.normalize(input_image, IMAGENET_DEFAULT_MEAN, IMAGENET_DEFAULT_STD)
input_image = torch.cat([input_image, rays_embeddings], dim=1).unsqueeze(0) # [1, 4, 9, H, W]
end_time = time.time()
gaussians_all_frame = model.forward_gaussians(input_image)
print(f"Forward pass takes {time.time()-end_time} s")
B, T, V = 1, gaussians_all_frame.shape[0]//opt.batch_size, opt.num_views
gaussians_all_frame = gaussians_all_frame.reshape(B, T, *gaussians_all_frame.shape[1:])
if run_idx > 0:
gaussians_all_frame_wo_inter = gaussians_all_frame[:, 1:max(end_t, 1)]
else:
gaussians_all_frame_wo_inter = gaussians_all_frame
if gaussians_all_frame_wo_inter.shape[1] > 0 and USE_INTERPOLATION:
# render multiview video
render_img_TV = []
for t in range(gaussians_all_frame.shape[1]):
render_img_V = []
for v, azi in enumerate(np.arange(0, 360, 90)):
gaussians = gaussians_all_frame[:, t]
cam_poses = torch.from_numpy(orbit_camera(0, azi, radius=opt.cam_radius, opengl=True)).unsqueeze(0).to(device)
cam_poses[:, :3, 1:3] *= -1 # invert up & forward direction
# cameras needed by gaussian rasterizer
cam_view = torch.inverse(cam_poses).transpose(1, 2) # [V, 4, 4]
cam_view_proj = cam_view @ proj_matrix # [V, 4, 4]
cam_pos = - cam_poses[:, :3, 3] # [V, 3]
rendered_image = model.gs.render(gaussians, cam_view.unsqueeze(0), cam_view_proj.unsqueeze(0), cam_pos.unsqueeze(0), bg_color=bg_color)['image']
rendered_image = rendered_image.squeeze(1)
rendered_image = F.interpolate(rendered_image, (256, 256))
rendered_image = rendered_image.permute(0,2,3,1).contiguous().float().cpu().numpy() # B H W C
render_img_V.append(rendered_image)
render_img_V = np.concatenate(render_img_V, axis=0) # V H W C
render_img_TV.append(render_img_V)
render_img_TV = np.stack(render_img_TV, axis=0) # T V H W C
ref_video = np.concatenate([np.stack([ref_video[ttt] for _ in range(opt.interpolate_rate)], 0) for ttt in range(ref_video.shape[0])], 0)
for tt in range(gaussians_all_frame_wo_inter.shape[1] -1 ):
curr_ref_video = deepcopy( ref_video[ tt * opt.interpolate_rate: tt * opt.interpolate_rate + interp_opt.num_frames ])
curr_ref_video[0, 1:] = render_img_TV[tt, 1:]
curr_ref_video[-1, 1:] = render_img_TV[tt+1, 1:]
curr_ref_video = torch.from_numpy(curr_ref_video).float().to(
device) # [4, 3, 256, 256]
images_input_interp = interpolate_tensors(curr_ref_video)
curr_ref_video[1:-1, :] = images_input_interp[1:-1, :]
input_image_interp = curr_ref_video.reshape([-1, *curr_ref_video.shape[2:]]).permute(0, 3, 1, 2).float().to(device) # [4, 3, 256, 256]
input_image_interp = F.interpolate(input_image_interp, size=(interp_opt.input_size, interp_opt.input_size), mode='bilinear',
align_corners=False)
input_image_interp = TF.normalize(input_image_interp, IMAGENET_DEFAULT_MEAN, IMAGENET_DEFAULT_STD)
input_image_interp = torch.cat([input_image_interp, interp_rays_embeddings], dim=1).unsqueeze(0) # [1, 4, 9, H, W]
end_time = time.time()
gaussians_interp_all_frame = model_interp.forward_gaussians(input_image_interp)
print(f"Interpolate forward pass takes {time.time()-end_time} s")
B, T, V = 1, gaussians_interp_all_frame.shape[0] // opt.batch_size, opt.num_views
gaussians_interp_all_frame = gaussians_interp_all_frame.reshape(B, T, *gaussians_interp_all_frame.shape[1:])
if tt > 0:
gaussians_interp_all_frame = gaussians_interp_all_frame[:, 1:]
gaussians_all_frame_all_run_w_interp.append(gaussians_interp_all_frame)
gaussians_all_frame_all_run.append(gaussians_all_frame_wo_inter)
start_t += opt.num_frames -1
mv_image = []
for v, azi in enumerate(np.arange(0, 360, 90)):
gaussians = gaussians_all_frame_wo_inter[:, -1]
cam_poses = torch.from_numpy(orbit_camera(0, azi, radius=opt.cam_radius, opengl=True)).unsqueeze(0).to(device)
cam_poses[:, :3, 1:3] *= -1 # invert up & forward direction
# cameras needed by gaussian rasterizer
cam_view = torch.inverse(cam_poses).transpose(1, 2) # [V, 4, 4]
cam_view_proj = cam_view @ proj_matrix # [V, 4, 4]
cam_pos = - cam_poses[:, :3, 3] # [V, 3]
rendered_image = model.gs.render(gaussians, cam_view.unsqueeze(0), cam_view_proj.unsqueeze(0), cam_pos.unsqueeze(0), bg_color=bg_color)['image']
rendered_image = rendered_image.squeeze(1)
rendered_image = F.interpolate(rendered_image, (256, 256))
rendered_image = rendered_image.permute(0,2,3,1).contiguous().float().cpu().numpy()
mv_image.append(rendered_image)
mv_image = np.concatenate(mv_image, axis=0)
elif gaussians_all_frame_wo_inter.shape[1] > 0:
gaussians_all_frame_all_run.append(gaussians_all_frame_wo_inter)
start_t += opt.num_frames -1
else:
break
gaussians_all_frame_wo_interp = torch.cat(gaussians_all_frame_all_run, dim=1)
if USE_INTERPOLATION:
gaussians_all_frame_w_interp = torch.cat(gaussians_all_frame_all_run_w_interp, dim=1)
if USE_INTERPOLATION:
zip_dump = zip(["wo_interp", "w_interp"], [gaussians_all_frame_wo_interp, gaussians_all_frame_w_interp])
else:
zip_dump = zip(["wo_interp"], [gaussians_all_frame_wo_interp])
for sv_name, gaussians_all_frame in zip_dump:
if sv_name == "w_interp":
ANIM_FPS = FPS / downsample_rate * gaussians_all_frame_w_interp.shape[1] / gaussians_all_frame_wo_interp.shape[1]
else:
ANIM_FPS = FPS / downsample_rate
print(f"{sv_name} | input video fps: {FPS} | downsample rate: {downsample_rate} | animation fps: {ANIM_FPS} | output video fps: {VIDEO_FPS}")
render_img_TV = []
for t in range(gaussians_all_frame.shape[1]):
render_img_V = []
for v, azi in enumerate(np.arange(0, 360, 90)):
gaussians = gaussians_all_frame[:, t]
cam_poses = torch.from_numpy(orbit_camera(0, azi, radius=opt.cam_radius, opengl=True)).unsqueeze(0).to(device)
cam_poses[:, :3, 1:3] *= -1 # invert up & forward direction
# cameras needed by gaussian rasterizer
cam_view = torch.inverse(cam_poses).transpose(1, 2) # [V, 4, 4]
cam_view_proj = cam_view @ proj_matrix # [V, 4, 4]
cam_pos = - cam_poses[:, :3, 3] # [V, 3]
result = model.gs.render(gaussians, cam_view.unsqueeze(0), cam_view_proj.unsqueeze(0), cam_pos.unsqueeze(0), bg_color=bg_color)
image = result['image']
alpha = result['alpha']
render_img_V.append((image.squeeze(1).permute(0,2,3,1).contiguous().float().cpu().numpy() * 255).astype(np.uint8))
render_img_V = np.concatenate(render_img_V, axis=2)
render_img_TV.append(render_img_V)
render_img_TV = np.concatenate(render_img_TV, axis=0)
images = []
azimuth = np.arange(0, 360, 1*30/VIDEO_FPS, dtype=np.int32)
elevation = 0
t = 0
delta_t = ANIM_FPS / VIDEO_FPS
for azi in azimuth:
if azi in [0, 90, 180, 270]:
cam_poses = torch.from_numpy(orbit_camera(elevation, azi, radius=opt.cam_radius, opengl=True)).unsqueeze(0).to(device)
cam_poses[:, :3, 1:3] *= -1 # invert up & forward direction
# cameras needed by gaussian rasterizer
cam_view = torch.inverse(cam_poses).transpose(1, 2) # [V, 4, 4]
cam_view_proj = cam_view @ proj_matrix # [V, 4, 4]
cam_pos = - cam_poses[:, :3, 3] # [V, 3]
for _ in range(45):
gaussians = gaussians_all_frame[:, int(t) % gaussians_all_frame.shape[1]]
t += delta_t
image = model.gs.render(gaussians, cam_view.unsqueeze(0), cam_view_proj.unsqueeze(0), cam_pos.unsqueeze(0), bg_color=bg_color)['image']
images.append((image.squeeze(1).permute(0,2,3,1).contiguous().float().cpu().numpy() * 255).astype(np.uint8))
else:
gaussians = gaussians_all_frame[:, int(t) % gaussians_all_frame.shape[1]]
t += delta_t
cam_poses = torch.from_numpy(orbit_camera(elevation, azi, radius=opt.cam_radius, opengl=True)).unsqueeze(0).to(device)
cam_poses[:, :3, 1:3] *= -1 # invert up & forward direction
# cameras needed by gaussian rasterizer
cam_view = torch.inverse(cam_poses).transpose(1, 2) # [V, 4, 4]
cam_view_proj = cam_view @ proj_matrix # [V, 4, 4]
cam_pos = - cam_poses[:, :3, 3] # [V, 3]
image = model.gs.render(gaussians, cam_view.unsqueeze(0), cam_view_proj.unsqueeze(0), cam_pos.unsqueeze(0), bg_color=bg_color)['image']
images.append((image.squeeze(1).permute(0,2,3,1).contiguous().float().cpu().numpy() * 255).astype(np.uint8))
images = np.concatenate(images, axis=0)
torch.cuda.empty_cache()
imageio.mimwrite(os.path.join(opt.workspace, f'{sv_name}_{name}_fixed.mp4'), render_img_TV, fps=ANIM_FPS)
print("Fixed video saved.")
imageio.mimwrite(os.path.join(opt.workspace, f'{sv_name}_{name}.mp4'), images, fps=VIDEO_FPS)
print("Stop video saved.")
assert opt.test_path is not None
if os.path.isdir(opt.test_path):
file_paths = glob.glob(os.path.join(opt.test_path, "*"))
else:
file_paths = [opt.test_path]
for path in sorted(file_paths):
process(opt, path)