-
Notifications
You must be signed in to change notification settings - Fork 37
/
m2scorer.py
executable file
·142 lines (122 loc) · 5.5 KB
/
m2scorer.py
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
#!/usr/bin/python
# This file is part of the NUS M2 scorer.
# The NUS M2 scorer is free software: you can redistribute it and/or modify
# it under the terms of the GNU General Public License as published by
# the Free Software Foundation, either version 3 of the License, or
# (at your option) any later version.
# The NUS M2 scorer is distributed in the hope that it will be useful,
# but WITHOUT ANY WARRANTY; without even the implied warranty of
# MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the
# GNU General Public License for more details.
# You should have received a copy of the GNU General Public License
# along with this program. If not, see <http://www.gnu.org/licenses/>.
# file: m2scorer.py
#
# score a system's output against a gold reference
#
# Usage: m2scorer.py [OPTIONS] proposed_sentences source_gold
# where
# proposed_sentences - system output, sentence per line
# source_gold - source sentences with gold token edits
# OPTIONS
# -v --verbose - print verbose output
# --very_verbose - print lots of verbose output
# --max_unchanged_words N - Maximum unchanged words when extracting edits. Default 2."
# --beta B - Beta value for F-measure. Default 0.5."
# --ignore_whitespace_casing - Ignore edits that only affect whitespace and caseing. Default no."
#
import sys
import levenshtein
from getopt import getopt
from util import paragraphs
from util import smart_open
def load_annotation(gold_file):
source_sentences = []
gold_edits = []
fgold = smart_open(gold_file, 'r')
puffer = fgold.read()
fgold.close()
puffer = puffer.decode('utf8')
for item in paragraphs(puffer.splitlines(True)):
item = item.splitlines(False)
sentence = [line[2:].strip() for line in item if line.startswith('S ')]
assert sentence != []
annotations = {}
for line in item[1:]:
if line.startswith('I ') or line.startswith('S '):
continue
assert line.startswith('A ')
line = line[2:]
fields = line.split('|||')
start_offset = int(fields[0].split()[0])
end_offset = int(fields[0].split()[1])
etype = fields[1]
if etype == 'noop':
start_offset = -1
end_offset = -1
corrections = [c.strip() if c != '-NONE-' else '' for c in fields[2].split('||')]
# NOTE: start and end are *token* offsets
original = ' '.join(' '.join(sentence).split()[start_offset:end_offset])
annotator = int(fields[5])
if annotator not in annotations.keys():
annotations[annotator] = []
annotations[annotator].append((start_offset, end_offset, original, corrections))
tok_offset = 0
for this_sentence in sentence:
tok_offset += len(this_sentence.split())
source_sentences.append(this_sentence)
this_edits = {}
for annotator, annotation in annotations.iteritems():
this_edits[annotator] = [edit for edit in annotation if edit[0] <= tok_offset and edit[1] <= tok_offset and edit[0] >= 0 and edit[1] >= 0]
if len(this_edits) == 0:
this_edits[0] = []
gold_edits.append(this_edits)
return (source_sentences, gold_edits)
def print_usage():
print >> sys.stderr, "Usage: m2scorer.py [OPTIONS] proposed_sentences gold_source"
print >> sys.stderr, "where"
print >> sys.stderr, " proposed_sentences - system output, sentence per line"
print >> sys.stderr, " source_gold - source sentences with gold token edits"
print >> sys.stderr, "OPTIONS"
print >> sys.stderr, " -v --verbose - print verbose output"
print >> sys.stderr, " --very_verbose - print lots of verbose output"
print >> sys.stderr, " --max_unchanged_words N - Maximum unchanged words when extraction edit. Default 2."
print >> sys.stderr, " --beta B - Beta value for F-measure. Default 0.5."
print >> sys.stderr, " --ignore_whitespace_casing - Ignore edits that only affect whitespace and caseing. Default no."
max_unchanged_words=2
beta = 0.5
ignore_whitespace_casing= False
verbose = False
very_verbose = False
opts, args = getopt(sys.argv[1:], "v", ["max_unchanged_words=", "beta=", "verbose", "ignore_whitespace_casing", "very_verbose"])
for o, v in opts:
if o in ('-v', '--verbose'):
verbose = True
elif o == '--very_verbose':
very_verbose = True
elif o == '--max_unchanged_words':
max_unchanged_words = int(v)
elif o == '--beta':
beta = float(v)
elif o == '--ignore_whitespace_casing':
ignore_whitespace_casing = True
else:
print >> sys.stderr, "Unknown option :", o
print_usage()
sys.exit(-1)
# starting point
if len(args) != 2:
print_usage()
sys.exit(-1)
system_file = args[0]
gold_file = args[1]
# load source sentences and gold edits
source_sentences, gold_edits = load_annotation(gold_file)
# load system hypotheses
fin = smart_open(system_file, 'r')
system_sentences = [line.decode("utf8").strip() for line in fin.readlines()]
fin.close()
p, r, f1 = levenshtein.batch_multi_pre_rec_f1(system_sentences, source_sentences, gold_edits, max_unchanged_words, beta, ignore_whitespace_casing, verbose, very_verbose)
print "Precision : %.4f" % p
print "Recall : %.4f" % r
print "F_%.1f : %.4f" % (beta, f1)