-
Notifications
You must be signed in to change notification settings - Fork 1
/
Copy pathtrain.py
243 lines (193 loc) · 8.04 KB
/
train.py
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
import sys
sys.path.append("./libraries/CCBANet")
import os
import argparse
import numpy as np
import torch
import time
from config import CONFIG
from libraries.dataset import LoadDataset
from libraries.dataset import BuildDatasetAndDataloader
from libraries.CCBANet.models.CCBANet import CCBANetModel
from libraries.CCBANet.utils.loss import DeepSupervisionLoss
from libraries.CCBANet.utils.metrics import evaluate,evaluate_single
from libraries.utils.optimizer import GetOptimizer
from libraries.utils.schedule import GetLearningRateSchedule
def parse_arguments():
parse = argparse.ArgumentParser(description='CCBANet Polyp Segmentation')
parse.add_argument('--dataset', type=str, default='Kvasir-SEG')
parse.add_argument('--batch_size', type=int, default=8)
parse.add_argument('--use_gpu', type=bool, default=True)
parse.add_argument('--load_ckpt', type=str, default=None)
parse.add_argument('--epoch_start', type=int, default=0)
return parse.parse_args()
def update_config(CONFIG,opt):
CONFIG["mode"]== "train"
CONFIG["dataset"]["name"]=opt.dataset
CONFIG["train"]["batch_size"]=opt.batch_size
if opt.use_gpu==True:
CONFIG["device"]="cuda"
else:
CONFIG["device"]="cpu"
if opt.load_ckpt is not None:
CONFIG["resume"]["is_resume"]=True
CONFIG["resume"]["epoch_start"]=opt.epoch_start
CONFIG["resume"]["pretrain_model"]=opt.load_ckpt
#Define training excution for each epoch
def epoch_training(model, train_dataloader, device, criteria_loss,typeloss, optimizer):
# Switch model to training mode
model.train()
training_loss = 0 # Storing sum of training losses
# For each batch
for step, (images,masks,_) in enumerate(train_dataloader):
#print(step*16,"/",len(train_dataloader)*16)
# Move X, Y to device (GPU)
images = images.to(device)
masks = masks.to(device)
# Clear previous gradient
optimizer.zero_grad()
# Feed forward the model
predicts = model(images)
loss=criteria_loss(predicts, masks,typeloss)
loss.backward()
# Update parameters
optimizer.step()
# Update training loss after each batch
training_loss += loss.item()
del images,masks,loss
if torch.cuda.is_available():
torch.cuda.empty_cache()
# return training loss
return training_loss/len(train_dataloader)
#Define training evaluation for each epoch
def epoch_evaluating(model, val_dataloader, device, criteria_loss,criteria_metrics):
# Switch model to evaluation mode
model.eval()
val_loss = 0 # Total loss of model on validation set
out_pred = torch.FloatTensor().to(device) # Tensor stores prediction values
out_gt = torch.FloatTensor().to(device) # Tensor stores groundtruth values
with torch.no_grad(): # Turn off gradient
# For each batch
for step, (images, masks,_) in enumerate(val_dataloader):
# Move images, labels to device (GPU)
images = images.to(device)
masks = masks.to(device)
# Update groundtruth values
out_gt = torch.cat((out_gt, masks), 0)
# Feed forward the model
predicts= model(images)
loss = criteria_loss(predicts, masks)
# Update prediction values
out_pred = torch.cat((out_pred, predicts[0]), 0)
# Update validation loss after each batch
val_loss += loss.item()
_recall, _specificity, _precision, _F1, _F2, _ACC_overall, _IoU_poly, _IoU_bg, _IoU_mean=criteria_metrics(out_pred, out_gt)
score_metrics={
"recall":_recall,
"specificity":_specificity,
"precision":_precision,
"f1":_F1,
"f2":_F2,
"accuracy":_ACC_overall,
"iou_poly":_IoU_poly,
"iou_bg":_IoU_bg,
"iou_mean":_IoU_mean
}
# Clear memory
del images, masks, loss, out_pred, out_gt
if torch.cuda.is_available(): torch.cuda.empty_cache()
# return validation loss, and metric score
return val_loss/len(val_dataloader), score_metrics
#Fully training
def full_training(config,model,train_dataloader,val_dataloader,optimizer,criteria_loss,criteria_metrics,lr_scheduler):
device=config["device"]
PATH_SAVE_MODEL=config["model_dir"]
MAX_EPOCHS=config["train"]["max_epochs"]
EARLY_STOP=config["train"]["early_stop"]
TRAINING_TIME_OUT = config["train"]["training_time_out"]
TYPELOSS=config["typeloss"]
epoch_start=0
if CONFIG["resume"]["is_resume"]== True:
epoch_start=CONFIG["resume"]["epoch_start"]
# Best Dice Coef value during training
best_score = 0
training_losses = []
validation_losses = []
validation_score = []
nonimproved_epoch = 0
start_time = time.time()
# Training each epoch
for epoch in np.arange(epoch_start,MAX_EPOCHS):
# Training
train_loss = epoch_training(model, train_dataloader, device, criteria_loss,TYPELOSS, optimizer)
training_losses.append(train_loss)
# Evaluating
val_loss, score_metrics = epoch_evaluating(model, val_dataloader, device, criteria_loss,criteria_metrics)
new_score=score_metrics["f1"]
validation_losses.append(val_loss)
validation_score.append(new_score)
#printf info
lr_current=lr_scheduler.get_last_lr()[0]
score_dicecoef=score_metrics["f1"]
score_f2=score_metrics["f2"]
score_precision=score_metrics["precision"]
score_accuracy=score_metrics["accuracy"]
score_recall=score_metrics["recall"]
score_iou_poly=score_metrics["iou_poly"]
score_iou_bg=score_metrics["iou_bg"]
score_iou_mean=score_metrics["iou_mean"]
score_specificity=score_metrics["specificity"]
print('Epoch:{:3d}/{:3d}|Train loss:{:2.4f} | Val loss:{:2.4f} | Lr:{:2.7f} | Dice:{:2.4f} | IoU-poly:{:2.4f} | IoU-bg:{:2.4f} | IoU-mean:{:2.4f} | AP:{:2.4f} | AR:{:2.4f} | F2:{:2.4f} | ACC:{:2.4f}'.format(epoch,MAX_EPOCHS,train_loss,val_loss,lr_current,score_dicecoef,score_iou_poly,score_iou_bg,score_iou_mean,score_precision,score_recall,score_f2,score_accuracy))
# Update learning rate
#lr_scheduler.step(new_score)
lr_scheduler.step() #lr_scheduler.step(epoch)
# Save model
if best_score < new_score:
print(f"Improve Dice Coef Core from {best_score} to {new_score}")
best_score = new_score
nonimproved_epoch = 0
#Save model for each epoch
torch.save({"model": model.state_dict(),
"optimizer": optimizer.state_dict(),
"lr_scheduler": lr_scheduler.state_dict(),
"best_score": best_score,
"epoch": epoch}, (PATH_SAVE_MODEL+'/model_epoch_{:d}.pth').format(epoch))
else:
nonimproved_epoch += 1
if nonimproved_epoch > EARLY_STOP:
print("Early stopping")
break
if time.time() - start_time > TRAINING_TIME_OUT:
print("Out of time")
break
if __name__ == '__main__':
opt=parse_arguments()
update_config(CONFIG,opt)
print(CONFIG)
train_data, val_data, test_data=LoadDataset(CONFIG)
#Create dataset and dataloader
train_dataset,train_dataloader,val_dataset,val_dataloader,_,_=BuildDatasetAndDataloader(CONFIG,train_data,val_data,test_data)
#Create model and get number of trainable parameters
model = CCBANetModel(CONFIG).to(CONFIG["device"])
print(model)
#Number of trainable parameters
print("Num of patameters:",sum(p.numel() for p in model.parameters() if p.requires_grad))
#Binary Cross Entropy Dice Coefficient
criteria_loss = DeepSupervisionLoss
#Metrics
criteria_metrics=evaluate_single #evaluate
#Optimizer
optimizer=GetOptimizer(CONFIG,model)
#Learning rete schedule
lr_scheduler=GetLearningRateSchedule(CONFIG,optimizer)
if CONFIG["resume"]["is_resume"]== True:
device=CONFIG["device"]
path_model= CONFIG["resume"]["pretrain_model"]
print("Load:",path_model)
checkpoint=torch.load(path_model,map_location=torch.device(device))
model.load_state_dict(checkpoint["model"])
optimizer.load_state_dict(checkpoint["optimizer"])
lr_scheduler.load_state_dict(checkpoint["lr_scheduler"])
del checkpoint
full_training(CONFIG,model,train_dataloader,val_dataloader,optimizer,criteria_loss,criteria_metrics,lr_scheduler)
print('Done')