-
Notifications
You must be signed in to change notification settings - Fork 30
CommandLineMode
In addition to the graphical user interface (GUI), AltAnalyze can be easily run by command-line. This includes jobs run locallly, on a remote Linux server or cluster. This works fine given that the user knows the file paths of the directories containing input files, the output directory and has already created files containing the groups and comparisons for all samples analyzed.
Creating Groups and Comparison Files - Creating groups and comparison files is needed beforehand, but is fairly easy. Just follow the directions listed here. This can be done in an automated fashion as well, if input files have a defined naming structure.
Running Command Line from Source or Compiled Versions - The command-line can be run from the source code or OS-specific binaries. The binaries are recommended since these already contain graphical, statistical and webservice dependencies that need to be separately installed for the source code (see more information here).
When running with OS-specific binaries of AltAnalyze directly call the binary files themselves:
- Windows OS
AltAnalyze.exe
- Mac OS X
AltAnalyze.app/Contents/MacOS/AltAnalyze
- PiPy (pip) installed
altanalyze
orAltAnalyze
- Python source code
python AltAnalyze.py
Downloading and installing a species specific database (mouse)
python AltAnalyze.py --species Mm --update Official --version EnsMart72
--additional all
Analyzing RNA-Seq files – FASTQ file directory using ICGS Population Discovery
python AltAnalyze.py --runICGS yes --platform "RNASeq" --species Mm
--column_method hopach --rho 0.2 --ExpressionCutoff 1 --FoldDiff 4
--SamplesDiffering 4 --excludeCellCycle conservative --output "C:/FASTQ_Files/"
--expname "Mm_HSCs" --fastq_dir "C:/FASTQ_Files/" --runKallisto yes
Analyzing RNA-Seq files – FASTQ file directory using known groups
python AltAnalyze.py --platform "RNASeq" --species Mm
--column_method hopach --rho 0.2 --ExpressionCutoff 1 --FoldDiff 4
--SamplesDiffering 4 --excludeCellCycle conservative --output "C:/FASTQ_Files/"
--expname "HSCs" --fastq_dir "C:/FASTQ_Files/" --runKallisto yes
--groupdir "C:/FASTQ_Files/groups.HSCs.txt" --compdir "C:/FASTQ_Files/comps.HSCs.txt"
Analyzing RNA-Seq files – BAM files using default options and GO-Elite
python AltAnalyze.py --species Hs --platform RNASeq --bedDir "C:/BAMFiles"
--groupdir "C:/BAMFiles/groups.YourExperiment.txt"
--compdir "C:/BAMFiles/comps.YourExperiment.txt" --output "C:/BAMFiles"
--expname "YourExperiment" --runGOElite yes" --GEelitefold 1.5
--GEelitepval 0.05 --GEeliteptype adjp
Analyzing CEL files – Affymetrix 3’ array using default options and GO-Elite
python AltAnalyze.py --species Mm --platform "3'array" --celdir "C:/CELFiles"
--groupdir "C:/CELFiles/groups.YourExperiment.txt"
--compdir "C:/CELFiles/comps.YourExperiment.txt" --output "C:/CELFiles"
--expname "YourExperiment" --runGOElite yes
Analyzing RNA-Seq files – TPM text file using ICGS Population Discovery
python AltAnalyze.py --platform RNASeq --species Mm --column_method hopach
--ExpressionCutoff 1 --FoldDiff 4 --SamplesDiffering 4 --rho 0.2
--excludeCellCycle conservative --removeOutliers no --row_method hopach
--expdir tests/demo_data/Fluidigim_TPM/input/BoneMarrow-scRNASeq.txt
--output tests/demo_data/Fluidigim_TPM/output/ --restrictBy protein_coding
--runICGS yes --expname BoneMarrow-scRNASeq --column_metric cosine
Analyzing RNA-Seq files – BAM file directory using ICGS Population Discovery
python AltAnalyze.py --platform RNASeq --species Hs --column_method hopach
--column_metric cosine --rho 0.2 --removeOutliers no --row_method hopach
--SamplesDiffering 3 --restrictBy protein_coding --excludeCellCycle no
--bedDir tests/demo_data/BAM/input/ --expname cancer --ExpressionCutoff 1
--FoldDiff 4 --output /tests/demo_data/BAM/input/ --runICGS yes
Analyzing RNA-Seq files – 10X Genomics Sparse Matrix file using ICGS Population Discovery
python AltAnalyze.py --platform RNASeq --species Hs --column_method hopach
--column_metric cosine --rho 0.2 --removeOutliers no --row_method hopach
--SamplesDiffering 3 --restrictBy protein_coding --excludeCellCycle no
--ChromiumSparseMatrix tests/demo_data/10X/input/filtered_feature_bc_matrix.h5
--expname cancer --ExpressionCutoff 1 --output /tests/demo_data/FASTQ/output/
--FoldDiff 4 --runICGS yes
- Other Options:
--k 50 (increase the > estimated number of ICGS predicted clusters for NMF)
--downsample 5000 (increase/decrease the number of cells to downsample to [default=2500])
--numVarGenes 500 (increase/decrease the number of variable genes for downsampling [default=500])
--numGenesExp 500 (increase/decrease the number of genes/cell expressed for filtering [default=500])
Separate custom UMAPs colored for specific genes and restricted to cells from certain samples
python AltAnalyze.py --image "UMAP" --plotType 2D --display False --species Mm
--input "/Users/exp/ICGS-NMF/exp.MarkerHeatmap.txt" --platform RNASeq --zscore no
--labels no --maskGroups "/Users/exp/ICGS-NMF/biological-replicates.txt"
--genes "Gfi1 Irf8 Vwf" --reimportModelScores False --separateGenePlots yes
Create a custom Heatmap with enrichment of single-cell marker gene sets (BioMarkers)
python AltAnalyze.py --image hierarchical --platform RNASeq --species Mm
--input "/Users/exp/ICGS-NMF/exp.MarkerHeatmap.txt" --contrast 5
--display False --color_gradient yellow_black_blue --row_method None
--column_method None --column_metric cosine --row_metric correlation
--normalization median --clusterGOElite BioMarkers --justShowTheseIDs
"Hnrnpa2b1 Hnrnpc Rbm10 Sf3b1 Srsf10 Srsf7 Irf8"
Create a custom Heatmap for genes corrrelated and anti-correlated to a target gene Prdm1
python AltAnalyze.py --image hierarchical --platform RNASeq --species Mm
--input "/Users/exp/ICGS-NMF/exp.MarkerHeatmap.txt" --contrast 5
--column_method None --row_method None --column_metric cosine
--color_gradient yellow_black_blue --row_metric correlation
--normalization median --genes "amplify Prdm1" --rho 0.3
Many more additional example workflow analysis options and detailed option descriptions for various AltAnalyze functions are provided in the below links.
Pathway Enrichment Analysis and Visualization
Clustering, QC, and Alternative Exons Visualization