Skip to content

Latest commit

 

History

History
44 lines (33 loc) · 1.22 KB

README.md

File metadata and controls

44 lines (33 loc) · 1.22 KB

Navigating Spatio-Temporal Heterogeneity: A Graph Transformer Approach for Traffic Forecasting

Here is the repository containing our code implementation of Spatio-Temporal Graph Transformer (STGormer).

PDF Image

Environment Setup

Install the requirements with pip:

pip install -r requirements.txt

Datasets

The datasets range from {NYCBike1, NYCBike2, NYCTaxi}. Please download the Dataset into the folder data/.

cd data/ && unzip Datesets.zip
Depracted: Preprocessing

And you need to change the format of {METALA, PEMSBAY} by following the instructions in data/pmes2nyc.ipynb. Each dataset is composed of 4 files, namely train.npz, val.npz, test.npz, and adj_mx.npz.

|----{Dataset}\
|    |----train.npz    # training data
|    |----test.npz     # test data
|    |----val.npz      # validation data
|    |----adj_mx.npz   # predefined graph structure

Model training

python main.py -g={GPU-ID} /
-d={datasets,NYCBike1/NYCBike2/NYCTaxi/METRLA/PEMSBAY} /
-s={save_path}

Citation