forked from andresantonioriveros/pyRF
-
Notifications
You must be signed in to change notification settings - Fork 0
/
Copy pathinverse.py
95 lines (70 loc) · 3.42 KB
/
inverse.py
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
# coding=utf-8
# Como mean_forest solo que al reves. Entreno un solo modelo con las medias del GP, pero
# luego al clasificar, se pasan todas las muestras de la curva y se agregan las votaciones
# -------------------------------------------------------------------------------------------------
import argparse
import pickle
import sys
import pandas as pd
from sklearn import cross_validation
from sklearn.ensemble import RandomForestClassifier
import metrics
import utils
if __name__ == '__main__':
print ' '.join(sys.argv)
parser = argparse.ArgumentParser()
parser.add_argument('--percentage', required=True, type=str)
parser.add_argument('--catalog', default='MACHO', choices=['MACHO', 'EROS', 'OGLE'])
parser.add_argument('--n_processes', required=True, type=int)
parser.add_argument('--training_set_path', required=True, type=str)
parser.add_argument('--test_path', required=True, type=str)
parser.add_argument('--folds', required=True, type=int)
parser.add_argument('--n_estimators', required=False, type=int)
parser.add_argument('--criterion', required=False, type=str)
parser.add_argument('--max_depth', required=False, type=int)
parser.add_argument('--min_samples_split', required=False, type=int)
parser.add_argument('--result_path', required=True, type=str)
parser.add_argument('--feature_filter', nargs='*', type=str)
args = parser.parse_args(sys.argv[1:])
percentage = args.percentage
catalog = args.catalog
n_processes = args.n_processes
training_set_path = args.training_set_path
folds = args.folds
test_path = args.test_path
n_estimators = args.n_estimators
criterion = args.criterion
max_depth = args.max_depth
min_samples_split = args.min_samples_split
result_path = args.result_path
feature_filter = args.feature_filter
data = pd.read_csv(training_set_path, index_col=0)
paths = [test_path + catalog + '_sampled_' + str(i) + '.csv' for i in xrange(100)]
# Necesito asegurarme de que las curvas sean las mismas en train y test
test_data = pd.read_csv(paths[0], index_col=0)
data, test_data = utils.equalize_indexes(data, test_data)
data, y = utils.filter_data(data, feature_filter=feature_filter)
skf = cross_validation.StratifiedKFold(y, n_folds=folds)
results = []
ids = []
for train_index, test_index in skf:
train_X, train_y = data.iloc[train_index], y.iloc[train_index]
clf = None
clf = RandomForestClassifier(n_estimators=n_estimators, criterion=criterion,
max_depth=max_depth, min_samples_split=min_samples_split,
n_jobs=n_processes)
clf.fit(train_X, train_y)
aux = []
for path in paths:
test_data = pd.read_csv(path, index_col=0)
test_data = test_data.loc[data.index].sort_index()
test_data, test_y = utils.filter_data(test_data, feature_filter=feature_filter)
test_X, test_y = test_data.iloc[train_index], test_y.iloc[train_index]
aux.append(metrics.predict_table(clf, test_X, test_y))
results.append(metrics.aggregate_predictions(aux))
ids.extend(test_X.index.tolist())
result = pd.concat(results)
output = open(result_path + 'Arboles/Arbol_' + percentage + '.pkl', 'wb+')
pickle.dump(clf, output)
output.close()
result.to_csv(result_path + 'Predicciones/result_' + percentage + '.csv')