-
Notifications
You must be signed in to change notification settings - Fork 0
/
etl.py
131 lines (90 loc) · 5.42 KB
/
etl.py
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
import configparser
from datetime import datetime
import os
from pyspark.sql import SparkSession
from pyspark.sql.functions import udf, col, monotonically_increasing_id
from pyspark.sql.functions import year, month, dayofmonth, hour, weekofyear, date_format, dayofweek, to_timestamp
from pyspark.sql.types import DateType, TimestampType, IntegerType
DEBUG = False
config = configparser.ConfigParser()
config.read('dl.cfg')
os.environ['AWS_ACCESS_KEY_ID'] = config['AWS']['AWS_ACCESS_KEY_ID']
os.environ['AWS_SECRET_ACCESS_KEY'] = config['AWS']['AWS_SECRET_ACCESS_KEY']
def create_spark_session():
spark = SparkSession \
.builder \
.config("spark.jars.packages", "org.apache.hadoop:hadoop-aws:2.7.0") \
.getOrCreate()
return spark
def process_song_data(spark, input_data, output_data):
# get filepath to song data file
#song_data = input_data + "song_data/A/A/A/*.json"
song_data = input_data + "song_data/*/*/*/*.json"
DEBUG and print("Reading song data files from", song_data)
# read song data file
df = spark.read.json(song_data)
DEBUG and print("Creating and persisting songs table")
# extract columns to create songs table
songs_table = df.select("song_id", "title", "artist_id", "year", "duration").where(col("song_id").isNotNull()).dropDuplicates(['song_id'])
# write songs table to parquet files partitioned by year and artist
songs_table.write.partitionBy(["year", "artist_id"]).parquet(output_data + "songs/", mode='overwrite')
DEBUG and print("Creating and persisting artists table")
# extract columns to create artists table
artists_table = df.select("artist_id", "artist_name", "artist_location", "artist_latitude", "artist_longitude").where(col("artist_id").isNotNull()).dropDuplicates(['artist_id'])
# write artists table to parquet files
artists_table = artists_table.write.parquet(output_data + "artists/", mode='overwrite')
def process_log_data(spark, input_data, output_data):
# get filepath to log data file
log_data = input_data + "log_data/*/*/*.json"
song_data = input_data + "song_data/*/*/*/*.json"
#song_data = input_data + "song_data/A/A/A/*.json"
DEBUG and print("Reading log data files from", log_data)
# read log data file
df = spark.read.json(log_data)
# filter by actions for song plays
df = df.filter(df.page == 'NextSong') \
.where(df.ts.isNotNull()) \
.withColumn("userId", df["userId"].cast(IntegerType())) \
.withColumn("sessionId", df["sessionId"].cast(IntegerType()))
DEBUG and print("Preparing users table")
# extract columns for users table
users_table = df.select("userId", "firstName", "lastName", "gender", "level").where(col("userId").isNotNull()).dropDuplicates(['userId'])
DEBUG and print("Creating and persisting users table")
# write users table to parquet files
users_table.write.parquet(output_data + "users/", mode='overwrite')
DEBUG and print("Creating and persisting time table")
# create timestamp column from original timestamp column
get_timestamp = udf(lambda ts: datetime.fromtimestamp(ts / 1000), TimestampType())
df = df.withColumn("start_time", get_timestamp(df.ts))
# extract columns to create time table
time_table = df.withColumn("hour", hour(df.start_time)) \
.withColumn("day", dayofmonth(df.start_time)) \
.withColumn("week", weekofyear(df.start_time)) \
.withColumn("month", month(df.start_time)) \
.withColumn("year", year(df.start_time)) \
.withColumn("weekday", dayofweek(df.start_time)) \
.select("start_time", "hour", "day", "week", "month", "year", "weekday") \
.dropDuplicates(["start_time"])
# write time table to parquet files partitioned by year and month
time_table.write.partitionBy(["year", "month"]).parquet(output_data + "times/", mode='overwrite')
DEBUG and print("Creating and persisting songplays table")
# read in song data to use for songplays table
song_df = spark.read.json(song_data).select("song_id", "title", "artist_id", "artist_name")
action_df = df.select("start_time", "userId", "level", "sessionId", "location", "userAgent", "artist", "song")
# extract columns from joined song and log datasets to create songplays table
songplays_table = action_df.join(song_df, (action_df.artist == song_df.artist_name) & (action_df.song == song_df.title)) \
.select(monotonically_increasing_id().alias("songplay_id"), "start_time", "userId", "level", "song_id", "artist_id", "sessionId", "location", "userAgent") \
.withColumn("month", month(df.start_time)) \
.withColumn("year", year(df.start_time))
# write songplays table to parquet files partitioned by year and month
songplays_table.write.partitionBy(["year", "month"]).parquet(output_data + "songplays/", mode='overwrite')
def main():
DEBUG and print("Creating Spark Session")
spark = create_spark_session()
input_data = "s3a://udacity-dend/"
output_data = "s3a://fawkesbucketdemoo/"
process_song_data(spark, input_data, output_data)
process_log_data(spark, input_data, output_data)
DEBUG and print("Fin.")
if __name__ == "__main__":
main()