-
Notifications
You must be signed in to change notification settings - Fork 2
/
load_data.py
82 lines (62 loc) · 2.97 KB
/
load_data.py
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
import h5py
import numpy as np
from utils import get_data_loader_class
from data_path_constants import get_data_path, get_index_path
def load_data(hyper_params, track_events = False):
rating_data_path = get_data_path(hyper_params)
index_path = get_index_path(hyper_params)
data_holder = DataHolder(rating_data_path, index_path)
print("# of users: {}\n# of items: {}".format(data_holder.num_users, data_holder.num_items))
hyper_params['total_users'] = data_holder.num_users
hyper_params['total_items'] = data_holder.num_items
# Do a partial item-space evaluation (only on the validation set)
# if the dataset has too many items
hyper_params['partial_eval'] = hyper_params['total_items'] > 1_000
train_loader_class, test_loader_class = get_data_loader_class(hyper_params)
send_val = hyper_params['model_type'] in [ 'SASRec', 'SVAE', 'MVAE' ]
return train_loader_class(data_holder.train, hyper_params, track_events), test_loader_class(
data_holder.test, data_holder.train, hyper_params, test_set = True,
val_data = data_holder.val if send_val else None
), test_loader_class(data_holder.val, data_holder.train, hyper_params), hyper_params
class DataHolder:
def __init__(self, rating_data_path, index_path):
with h5py.File(rating_data_path + "total_data.hdf5", 'r') as f:
self.data = list(zip(f['user'][:], f['item'][:], f['rating'][:]))
self.index = np.load(index_path + "/index.npz")['data']
self.remap()
def remap(self):
## Counting number of unique users/items before
valid_users, valid_items = set(), set()
for at, (u, i, r) in enumerate(self.data):
if self.index[at] != -1:
valid_users.add(u)
valid_items.add(i)
## Map creation done!
user_map = dict(zip(list(valid_users), list(range(len(valid_users)))))
item_map = dict(zip(list(valid_items), list(range(len(valid_items)))))
new_data, new_index = [], []
for at, (u, i, r) in enumerate(self.data):
if self.index[at] == -1: continue
new_data.append([ user_map[u], item_map[i], r ])
new_index.append(self.index[at])
self.data = new_data
self.index = new_index
self.num_users = len(valid_users)
self.num_items = len(valid_items)
def select(self, index_val):
ret = []
for at, tup in enumerate(self.data):
if self.index[at] == index_val: ret.append(tup)
return ret
@property
def train(self): return self.select(0)
@property
def val(self): return self.select(1)
@property
def test(self): return self.select(2)
@property
def num_train_interactions(self): return int(sum(map(lambda x: x == 0, self.index)))
@property
def num_val_interactions(self): return int(sum(map(lambda x: x == 1, self.index)))
@property
def num_test_interactions(self): return int(sum(map(lambda x: x == 2, self.index)))