This repository has been archived by the owner on Jun 24, 2021. It is now read-only.
-
Notifications
You must be signed in to change notification settings - Fork 5
/
Copy pathpredictor.py
82 lines (62 loc) · 2.49 KB
/
predictor.py
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
import os
import keras
import pydload
from keras_retinanet import models
from keras_retinanet.utils.image import read_image_bgr, preprocess_image, resize_image
from keras_retinanet.utils.visualization import draw_box, draw_caption
from keras_retinanet.utils.colors import label_color
import cv2
import numpy as np
WEIGHTS_URL = 'https://github.com/notAi-tech/LogoDet/releases/download/292_classes_v1/weights'
CLASSES_URL = 'https://github.com/notAi-tech/LogoDet/releases/download/292_classes_v1/classes'
home = os.path.expanduser("~")
model_folder = os.path.join(home, '.LogoDet/')
if not os.path.exists(model_folder):
os.mkdir(model_folder)
model_path = os.path.join(model_folder, 'weights')
if not os.path.exists(model_path):
print('Downloading the checkpoint to', model_path)
pydload.dload(WEIGHTS_URL, save_to_path=model_path, max_time=None)
classes_path = os.path.join(model_folder, 'classes')
if not os.path.exists(classes_path):
print('Downloading the class list to', classes_path)
pydload.dload(CLASSES_URL, save_to_path=classes_path, max_time=None)
detection_model = models.load_model(model_path, backbone_name='resnet50')
classes = open(classes_path).readlines()
classes = [i.strip() for i in classes if i.strip()]
def detect_single(img_path, min_prob=0.4):
image = read_image_bgr(img_path)
image = preprocess_image(image)
image, scale = resize_image(image)
boxes, scores, labels = detection_model.predict_on_batch(np.expand_dims(image, axis=0))
boxes /= scale
processed_boxes = []
for box, score, label in zip(boxes[0], scores[0], labels[0]):
if score < min_prob:
continue
box = box.astype(int).tolist()
label = classes[label]
processed_boxes.append({'box': box, 'score': float(score), 'label': label})
return processed_boxes
def detect_batch():
# TODO for videos
pass
def predictor(image_paths=[], batch_size=1):
results = []
for image_path in image_paths:
try:
results.append(detect_single(image_path))
except Exception as ex:
results.append([f'Failed with exception: {ex}'])
return results
if __name__ == '__main__':
import json
import pickle
import base64
example = ["example.jpg"]
print(json.dumps(predictor(example)))
example = {
file_name: base64.b64encode(open(file_name, "rb").read()).decode("utf-8")
for file_name in example
}
pickle.dump(example, open("example.pkl", "wb"), protocol=2)