-
Notifications
You must be signed in to change notification settings - Fork 0
/
support.tex
84 lines (66 loc) · 1.88 KB
/
support.tex
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
\documentclass[11pt, paper=a4]{article}
\usepackage[left=4.5cm, right=4.5cm, top=2cm, bottom=3cm %showframe
]{geometry}
\usepackage{amsmath}
\usepackage{amsthm}
\usepackage{amssymb}
\usepackage{graphicx}
\newcommand{\E}{\operatorname{\mathbf{E}}}
\newcommand{\Var}{\operatorname{\mathbf{Var}}}
\addtolength{\parskip}{\baselineskip}
\parindent 0pt
\makeatletter
\renewcommand{\fnum@figure}{\figurename~S\thefigure}
\makeatother
\begin{document}
\begin{center}
\Large
Supporting Information for \textit{Non-random network connectivity comes in pairs}
\smallskip
\normalsize
Felix Z.~Hoffmann, Jochen Triesch
\end{center}
\section*{SI1}
Solving
\begin{align}
\mu = px + (1-p)y
\end{align}
for $p$ gives
\begin{align}
p = \frac{\mu-y}{x-y},
\end{align}
%
which, plugged into
\begin{align}
\varrho = \frac{p x^2 + (1-p) y^2}{\mu^2},
\end{align}
yields
\begin{align}
\varrho & = \frac{\left(\frac{\mu-y}{x-y}\right)x^2 + \left(1-\frac{\mu-y}{x-y}\right) y^2}{\mu^2} \\
& = \frac{\left(\frac{\mu-y}{x-y}\right)(x^2-y^2) + y^2}{\mu^2}\\
& = \frac{(\mu -y) (x+y) + y^2}{\mu^2} \\
& = \frac{x+y}{\mu} - \frac{xy}{\mu^2}.
\end{align}
\section*{SI2}
Solve
\begin{align}
p = \frac{\mu-y}{x-y}
\end{align}
for $y$ and since $x \geq \mu$,
\begin{align}
y = \frac{\mu - px}{1-p} \leq \frac{\mu - p\mu}{1-p} = \mu.
\end{align}
%% \section*{Figure S1}
\begin{figure}[h!]
\centering
\includegraphics[width=0.7\textwidth]{%
img/two_point_contour_mu02.pdf}
\includegraphics[width=0.67\textwidth]{%
img/two_point_contour_mu05.pdf}
\caption{Relative overrepresentation $\varrho$ of bidirectional
connections in networks with a fraction of pairs connected with a
high probability $x$ and the rest of the pairs connected with a low
probability $y$. \textbf{Top} Overall connection probability in the network $\mu = 0.2$ \textbf{Bottom} $\mu =0.5$ }
\label{fig:tp}
\end{figure}
\end{document}