forked from daiquocnguyen/ConvKB
-
Notifications
You must be signed in to change notification settings - Fork 0
/
train.py
149 lines (126 loc) · 6.84 KB
/
train.py
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
import tensorflow as tf
import numpy as np
np.random.seed(1234)
import os
import time
import datetime
from argparse import ArgumentParser, ArgumentDefaultsHelpFormatter
from builddata import *
from model import ConvKB
# Parameters
# ==================================================
parser = ArgumentParser("ConvKB", formatter_class=ArgumentDefaultsHelpFormatter, conflict_handler='resolve')
parser.add_argument("--data", default="./data/", help="Data sources.")
parser.add_argument("--run_folder", default="../", help="Data sources.")
parser.add_argument("--name", default="WN18RR", help="Name of the dataset.")
parser.add_argument("--embedding_dim", default=50, type=int, help="Dimensionality of character embedding")
parser.add_argument("--filter_sizes", default="1", help="Comma-separated filter sizes")
parser.add_argument("--num_filters", default=500, type=int, help="Number of filters per filter size")
parser.add_argument("--dropout_keep_prob", default=1.0, type=float, help="Dropout keep probability")
parser.add_argument("--l2_reg_lambda", default=0.001, type=float, help="L2 regularization lambda")
parser.add_argument("--learning_rate", default=0.0001, type=float, help="Learning rate")
parser.add_argument("--is_trainable", default=True, type=bool, help="")
parser.add_argument("--batch_size", default=128, type=int, help="Batch Size")
parser.add_argument("--neg_ratio", default=1.0, type=float, help="Number of negative triples generated by positive")
parser.add_argument("--num_epochs", default=201, type=int, help="Number of training epochs")
parser.add_argument("--saveStep", default=200, type=int, help="")
parser.add_argument("--allow_soft_placement", default=True, type=bool, help="Allow device soft device placement")
parser.add_argument("--log_device_placement", default=False, type=bool, help="Log placement of ops on devices")
parser.add_argument("--model_name", default='wn18rr', help="")
parser.add_argument("--useConstantInit", action='store_true')
parser.add_argument("--model_index", default='200', help="")
parser.add_argument("--num_splits", default=8, type=int, help="Split the validation set into 8 parts for a faster evaluation")
parser.add_argument("--testIdx", default=1, type=int, help="From 0 to 7. Index of one of 8 parts")
parser.add_argument("--decode", action='store_false')
args = parser.parse_args()
print(args)
# Load data
print("Loading data...")
train, valid, test, words_indexes, indexes_words, \
headTailSelector, entity2id, id2entity, relation2id, id2relation = build_data(path=args.data, name=args.name)
data_size = len(train)
train_batch = Batch_Loader(train, words_indexes, indexes_words, headTailSelector, \
entity2id, id2entity, relation2id, id2relation, batch_size=args.batch_size,
neg_ratio=args.neg_ratio)
entity_array = np.array(list(train_batch.indexes_ents.keys()))
lstEmbed = []
#Using the pre-trained embeddings.
print("Using pre-trained model.")
lstEmbed = np.empty([len(words_indexes), args.embedding_dim]).astype(np.float32)
initEnt, initRel = init_norm_Vector(args.data + args.name + '/relation2vec' + str(args.embedding_dim) + '.init',
args.data + args.name + '/entity2vec' + str(args.embedding_dim) + '.init',
args.embedding_dim)
for _word in words_indexes:
if _word in relation2id:
index = relation2id[_word]
_ind = words_indexes[_word]
lstEmbed[_ind] = initRel[index]
elif _word in entity2id:
index = entity2id[_word]
_ind = words_indexes[_word]
lstEmbed[_ind] = initEnt[index]
else:
print('*****************Error********************!')
break
lstEmbed = np.array(lstEmbed, dtype=np.float32)
assert len(words_indexes) % (len(entity2id) + len(relation2id)) == 0
print("Loading data... finished!")
x_valid = np.array(list(valid.keys())).astype(np.int32)
y_valid = np.array(list(valid.values())).astype(np.float32)
x_test = np.array(list(test.keys())).astype(np.int32)
y_test = np.array(list(test.values())).astype(np.float32)
# Training
# ==================================================
with tf.Graph().as_default():
tf.set_random_seed(1234)
session_conf = tf.ConfigProto(allow_soft_placement=args.allow_soft_placement,
log_device_placement=args.log_device_placement)
session_conf.gpu_options.allow_growth = True
sess = tf.Session(config=session_conf)
with sess.as_default():
global_step = tf.Variable(0, name="global_step", trainable=False)
cnn = ConvKB(
sequence_length=x_valid.shape[1], # 3
num_classes=y_valid.shape[1], # 1
pre_trained=lstEmbed,
embedding_size=args.embedding_dim,
filter_sizes=list(map(int, args.filter_sizes.split(","))),
num_filters=args.num_filters,
vocab_size=len(words_indexes),
l2_reg_lambda=args.l2_reg_lambda,
is_trainable=args.is_trainable,
useConstantInit=args.useConstantInit)
optimizer = tf.train.AdamOptimizer(learning_rate=args.learning_rate)
# optimizer = tf.train.RMSPropOptimizer(learning_rate=args.learning_rate)
# optimizer = tf.train.GradientDescentOptimizer(learning_rate=args.learning_rate)
grads_and_vars = optimizer.compute_gradients(cnn.loss)
train_op = optimizer.apply_gradients(grads_and_vars, global_step=global_step)
out_dir = os.path.abspath(os.path.join(args.run_folder, "runs", args.model_name))
print("Writing to {}\n".format(out_dir))
# Checkpoint directory. Tensorflow assumes this directory already exists so we need to create it
checkpoint_dir = os.path.abspath(os.path.join(out_dir, "checkpoints"))
checkpoint_prefix = os.path.join(checkpoint_dir, "model")
if not os.path.exists(checkpoint_dir):
os.makedirs(checkpoint_dir)
# Initialize all variables
sess.run(tf.global_variables_initializer())
def train_step(x_batch, y_batch):
"""
A single training step
"""
feed_dict = {
cnn.input_x: x_batch,
cnn.input_y: y_batch,
cnn.dropout_keep_prob: args.dropout_keep_prob,
}
_, step, loss = sess.run([train_op, global_step, cnn.loss], feed_dict)
num_batches_per_epoch = int((data_size - 1) / args.batch_size) + 1
for epoch in range(args.num_epochs):
for batch_num in range(num_batches_per_epoch):
x_batch, y_batch = train_batch()
train_step(x_batch, y_batch)
current_step = tf.train.global_step(sess, global_step)
if epoch > 0:
if epoch % args.saveStep == 0:
path = cnn.saver.save(sess, checkpoint_prefix, global_step=epoch)
print("Saved model checkpoint to {}\n".format(path))