forked from daiquocnguyen/ConvKB
-
Notifications
You must be signed in to change notification settings - Fork 0
/
model.py
74 lines (64 loc) · 3.59 KB
/
model.py
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
import tensorflow as tf
import numpy as np
import math
class ConvKB(object):
def __init__(self, sequence_length, num_classes, embedding_size, filter_sizes, num_filters, vocab_size,
pre_trained=[], l2_reg_lambda=0.001, is_trainable=True, useConstantInit=False):
# Placeholders for input, output and dropout
self.input_x = tf.placeholder(tf.int32, [None, sequence_length], name="input_x")
self.input_y = tf.placeholder(tf.float32, [None, num_classes], name="input_y")
self.dropout_keep_prob = tf.placeholder(tf.float32, name="dropout_keep_prob")
# Keeping track of l2 regularization loss (optional)
l2_loss = tf.constant(0.0)
# Embedding layer
with tf.name_scope("embedding"):
if pre_trained == []:
self.W = tf.Variable(tf.random_uniform([vocab_size, embedding_size], -math.sqrt(1.0/embedding_size), math.sqrt(1.0/embedding_size), seed=1234), name="W")
else:
self.W = tf.get_variable(name="W2", initializer=pre_trained) #trainable=is_trainable)
self.embedded_chars = tf.nn.embedding_lookup(self.W, self.input_x)
self.embedded_chars_expanded = tf.expand_dims(self.embedded_chars, -1)
# Create a convolution + maxpool layer for each filter size
pooled_outputs = []
for i, filter_size in enumerate(filter_sizes):
with tf.name_scope("conv-maxpool-%s" % filter_size):
if useConstantInit == False:
filter_shape = [sequence_length, filter_size, 1, num_filters]
W = tf.Variable(tf.truncated_normal(filter_shape, stddev=0.1, seed=1234), name="W")
else:
init1 = tf.constant([[[[0.1]]], [[[0.1]]], [[[-0.1]]]])
weight_init = tf.tile(init1, [1, filter_size, 1, num_filters])
W = tf.get_variable(name="W3", initializer=weight_init)
b = tf.Variable(tf.constant(0.0, shape=[num_filters]), name="b")
conv = tf.nn.conv2d(
self.embedded_chars_expanded,
W,
strides=[1, 1, 1, 1],
padding="VALID",
name="conv")
# Apply nonlinearity
h = tf.nn.relu(tf.nn.bias_add(conv, b), name="relu")
pooled_outputs.append(h)
# Combine all the pooled features
self.h_pool = tf.concat(pooled_outputs, 2)
total_dims = (embedding_size * len(filter_sizes) - sum(filter_sizes) + len(filter_sizes)) * num_filters
self.h_pool_flat = tf.reshape(self.h_pool, [-1, total_dims])
# Add dropout
with tf.name_scope("dropout"):
self.h_drop = tf.nn.dropout(self.h_pool_flat, self.dropout_keep_prob)
# Final (unnormalized) scores and predictions
with tf.name_scope("output"):
W = tf.get_variable(
"W",
shape=[total_dims, num_classes],
initializer=tf.contrib.layers.xavier_initializer(seed=1234))
b = tf.Variable(tf.constant(0.0, shape=[num_classes]), name="b")
l2_loss += tf.nn.l2_loss(W)
l2_loss += tf.nn.l2_loss(b)
self.scores = tf.nn.xw_plus_b(self.h_drop, W, b, name="scores")
self.predictions = tf.nn.sigmoid(self.scores)
# Calculate loss
with tf.name_scope("loss"):
losses = tf.nn.softplus(self.scores * self.input_y)
self.loss = tf.reduce_mean(losses) + l2_reg_lambda * l2_loss
self.saver = tf.train.Saver(tf.global_variables(), max_to_keep=500)