forked from daiquocnguyen/ConvKB
-
Notifications
You must be signed in to change notification settings - Fork 0
/
eval.py
258 lines (210 loc) · 12.4 KB
/
eval.py
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
import tensorflow as tf
import numpy as np
from scipy.stats import rankdata
np.random.seed(1234)
import os
import time
import datetime
from argparse import ArgumentParser, ArgumentDefaultsHelpFormatter
from builddata import *
from model import ConvKB
# Parameters
# ==================================================
parser = ArgumentParser("CapsE", formatter_class=ArgumentDefaultsHelpFormatter, conflict_handler='resolve')
parser.add_argument("--data", default="./data/", help="Data sources.")
parser.add_argument("--run_folder", default="../", help="Data sources.")
parser.add_argument("--name", default="WN18RR", help="Name of the dataset.")
parser.add_argument("--embedding_dim", default=50, type=int, help="Dimensionality of character embedding")
parser.add_argument("--filter_sizes", default="1", help="Comma-separated filter sizes")
parser.add_argument("--num_filters", default=500, type=int, help="Number of filters per filter size")
parser.add_argument("--dropout_keep_prob", default=1.0, type=float, help="Dropout keep probability")
parser.add_argument("--l2_reg_lambda", default=0.001, type=float, help="L2 regularization lambda")
parser.add_argument("--learning_rate", default=0.0001, type=float, help="Learning rate")
parser.add_argument("--is_trainable", default=True, type=bool, help="")
parser.add_argument("--batch_size", default=128, type=int, help="Batch Size")
parser.add_argument("--neg_ratio", default=1.0, type=float, help="Number of negative triples generated by positive")
parser.add_argument("--use_pretrained", default=True, type=bool, help="Using the pretrained embeddings")
parser.add_argument("--num_epochs", default=201, type=int, help="Number of training epochs")
parser.add_argument("--saveStep", default=200, type=int, help="")
parser.add_argument("--allow_soft_placement", default=True, type=bool, help="Allow device soft device placement")
parser.add_argument("--log_device_placement", default=False, type=bool, help="Log placement of ops on devices")
parser.add_argument("--model_name", default='wn18rr', help="")
parser.add_argument("--useConstantInit", action='store_true')
parser.add_argument("--model_index", default='200', help="")
parser.add_argument("--num_splits", default=8, type=int,
help="Split the validation set into 8 parts for a faster evaluation")
parser.add_argument("--testIdx", default=1, type=int, help="From 0 to 7. Index of one of 8 parts")
parser.add_argument("--decode", action='store_false')
args = parser.parse_args()
print(args)
# Load data
print("Loading data...")
train, valid, test, words_indexes, indexes_words, \
headTailSelector, entity2id, id2entity, relation2id, id2relation = build_data(path=args.data, name=args.name)
data_size = len(train)
train_batch = Batch_Loader(train, words_indexes, indexes_words, headTailSelector, \
entity2id, id2entity, relation2id, id2relation, batch_size=args.batch_size,
neg_ratio=args.neg_ratio)
entity_array = np.array(list(train_batch.indexes_ents.keys()))
lstEmbed = []
if args.use_pretrained == True:
print("Using pre-trained model.")
lstEmbed = np.empty([len(words_indexes), args.embedding_dim]).astype(np.float32)
initEnt, initRel = init_norm_Vector(args.data + args.name + '/relation2vec' + str(args.embedding_dim) + '.init',
args.data + args.name + '/entity2vec' + str(args.embedding_dim) + '.init',
args.embedding_dim)
for _word in words_indexes:
if _word in relation2id:
index = relation2id[_word]
_ind = words_indexes[_word]
lstEmbed[_ind] = initRel[index]
elif _word in entity2id:
index = entity2id[_word]
_ind = words_indexes[_word]
lstEmbed[_ind] = initEnt[index]
else:
print('*****************Error********************!')
break
lstEmbed = np.array(lstEmbed, dtype=np.float32)
assert len(words_indexes) % (len(entity2id) + len(relation2id)) == 0
print("Loading data... finished!")
x_valid = np.array(list(valid.keys())).astype(np.int32)
y_valid = np.array(list(valid.values())).astype(np.float32)
len_valid = len(x_valid)
batch_valid = int(len_valid / (args.num_splits - 1))
x_test = np.array(list(test.keys())).astype(np.int32)
y_test = np.array(list(test.values())).astype(np.float32)
len_test = len(x_test)
batch_test = int(len_test / (args.num_splits - 1))
# uncomment when tuning hyper-parameters on the validation set
# x_test = x_valid
# y_test = y_valid
# len_test = len_valid
# batch_test = batch_valid
##########################################
if args.decode == False:
lstModelNames = list(args.model_name.split(","))
for _model_name in lstModelNames:
out_dir = os.path.abspath(os.path.join(args.run_folder, "runs", _model_name))
print("Evaluating {}\n".format(out_dir))
checkpoint_dir = os.path.abspath(os.path.join(out_dir, "checkpoints"))
checkpoint_prefix = os.path.join(checkpoint_dir, "model")
lstModelIndexes = list(args.model_index.split(","))
for _model_index in lstModelIndexes:
_file = checkpoint_prefix + "-" + _model_index
lstHT = []
for _index in range(args.num_splits):
with open(_file + '.eval.' + str(_index) + '.txt') as f:
for _line in f:
if _line.strip() != '':
lstHT.append(list(map(float, _line.strip().split())))
lstHT = np.array(lstHT)
print(_file, 'mr, mrr, hits@10 --> ', np.sum(lstHT, axis=0) / (2 * len_test))
print('------------------------------------')
else:
with tf.Graph().as_default():
tf.set_random_seed(1234)
session_conf = tf.ConfigProto(allow_soft_placement=args.allow_soft_placement,
log_device_placement=args.log_device_placement)
session_conf.gpu_options.allow_growth = True
sess = tf.Session(config=session_conf)
with sess.as_default():
global_step = tf.Variable(0, name="global_step", trainable=False)
cnn = ConvKB(
sequence_length=x_valid.shape[1], # 3
num_classes=y_valid.shape[1], # 1
pre_trained=lstEmbed,
embedding_size=args.embedding_dim,
filter_sizes=list(map(int, args.filter_sizes.split(","))),
num_filters=args.num_filters,
vocab_size=len(words_indexes),
l2_reg_lambda=args.l2_reg_lambda,
is_trainable=args.is_trainable,
useConstantInit=args.useConstantInit)
# Output directory for models and summaries
lstModelNames = list(args.model_name.split(","))
for _model_name in lstModelNames:
out_dir = os.path.abspath(os.path.join(args.run_folder, "runs", _model_name))
print("Evaluating {}\n".format(out_dir))
# Checkpoint directory. Tensorflow assumes this directory already exists so we need to create it
checkpoint_dir = os.path.abspath(os.path.join(out_dir, "checkpoints"))
checkpoint_prefix = os.path.join(checkpoint_dir, "model")
lstModelIndexes = list(args.model_index.split(","))
for _model_index in lstModelIndexes:
_file = checkpoint_prefix + "-" + _model_index
cnn.saver.restore(sess, _file)
print("Loaded model", _file)
# Predict function to predict scores for test data
def predict(x_batch, y_batch, writer=None):
feed_dict = {
cnn.input_x: x_batch,
cnn.input_y: y_batch,
cnn.dropout_keep_prob: 1.0,
}
scores = sess.run([cnn.predictions], feed_dict)
return scores
def test_prediction(x_batch, y_batch, head_or_tail='head'):
hits10 = 0.0
mrr = 0.0
mr = 0.0
for i in range(len(x_batch)):
new_x_batch = np.tile(x_batch[i], (len(entity2id), 1))
new_y_batch = np.tile(y_batch[i], (len(entity2id), 1))
if head_or_tail == 'head':
new_x_batch[:, 0] = entity_array
else: # 'tail'
new_x_batch[:, 2] = entity_array
lstIdx = []
for tmpIdxTriple in range(len(new_x_batch)):
tmpTriple = (new_x_batch[tmpIdxTriple][0], new_x_batch[tmpIdxTriple][1],
new_x_batch[tmpIdxTriple][2])
if (tmpTriple in train) or (tmpTriple in valid) or (tmpTriple in test): #also remove the valid test triple
lstIdx.append(tmpIdxTriple)
new_x_batch = np.delete(new_x_batch, lstIdx, axis=0)
new_y_batch = np.delete(new_y_batch, lstIdx, axis=0)
#thus, insert the valid test triple again, to the beginning of the array
new_x_batch = np.insert(new_x_batch, 0, x_batch[i], axis=0) #thus, the index of the valid test triple is equal to 0
new_y_batch = np.insert(new_y_batch, 0, y_batch[i], axis=0)
# while len(new_x_batch) % ((int(args.neg_ratio) + 1) * args.batch_size) != 0:
# new_x_batch = np.append(new_x_batch, [x_batch[i]], axis=0)
# new_y_batch = np.append(new_y_batch, [y_batch[i]], axis=0)
results = []
listIndexes = range(0, len(new_x_batch), (int(args.neg_ratio) + 1) * args.batch_size)
for tmpIndex in range(len(listIndexes) - 1):
results = np.append(results, predict(
new_x_batch[listIndexes[tmpIndex]:listIndexes[tmpIndex + 1]],
new_y_batch[listIndexes[tmpIndex]:listIndexes[tmpIndex + 1]]))
results = np.append(results,
predict(new_x_batch[listIndexes[-1]:], new_y_batch[listIndexes[-1]:]))
results = np.reshape(results, -1)
results_with_id = rankdata(results, method='ordinal')
_filter = results_with_id[0]
mr += _filter
mrr += 1.0 / _filter
if _filter <= 10:
hits10 += 1
return np.array([mr, mrr, hits10])
if args.testIdx < (args.num_splits - 1):
head_results = test_prediction(
x_test[batch_test * args.testIdx: batch_test * (args.testIdx + 1)],
y_test[batch_test * args.testIdx: batch_test * (args.testIdx + 1)],
head_or_tail='head')
tail_results = test_prediction(
x_test[batch_test * args.testIdx: batch_test * (args.testIdx + 1)],
y_test[batch_test * args.testIdx: batch_test * (args.testIdx + 1)],
head_or_tail='tail')
else:
head_results = test_prediction(x_test[batch_test * args.testIdx: len_test],
y_test[batch_test * args.testIdx: len_test],
head_or_tail='head')
tail_results = test_prediction(x_test[batch_test * args.testIdx: len_test],
y_test[batch_test * args.testIdx: len_test],
head_or_tail='tail')
wri = open(_file + '.eval.' + str(args.testIdx) + '.txt', 'w')
for _val in head_results:
wri.write(str(_val) + ' ')
wri.write('\n')
for _val in tail_results:
wri.write(str(_val) + ' ')
wri.write('\n')
wri.close()