forked from michaellee1/CellSeg
-
Notifications
You must be signed in to change notification settings - Fork 0
/
Copy pathmain.py
executable file
·234 lines (206 loc) · 9.94 KB
/
main.py
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
# main.py
# ---------------------------
# main.py connects segmentation, stitching, and output into a single pipeline. It prints metadata about
# the run, and then initializes a segmenter and stitcher. Looping over all image files in the directory,
# each image is segmented, stitched, grown, and overlaps resolved. The data is concatenated if outputting
# as quantifications, and outputted per file for other output methods. This file can be run by itself by
# invoking python main.py or the main function imported.
import os
from src.cvsegmenter import CVSegmenter
from src.cvstitch import CVMaskStitcher
from src.cvmask import CVMask
from src import cvutils
from src import cvvisualize
from src import fcswrite
from cvconfig import CVConfig
from PIL import Image
import skimage
import numpy as np
import pandas as pd
import tensorflow as tf
from collections import defaultdict
def main():
os.environ['TF_CPP_MIN_LOG_LEVEL'] = '1'
tf.compat.v1.logging.set_verbosity(tf.compat.v1.logging.ERROR)
cf = CVConfig()
print('Initializing CSSegmenter at', cf.DIRECTORY_PATH)
if cf.IS_CODEX_OUTPUT:
print('Picking channel', cf.NUCLEAR_CHANNEL_NAME, 'from',
len(cf.CHANNEL_NAMES), 'total to segment on')
print('Channel names:')
print(cf.CHANNEL_NAMES)
print("Working with images of shape:", cf.SHAPE)
stitcher = CVMaskStitcher(overlap=cf.OVERLAP)
segmenter = CVSegmenter(
cf.SHAPE,
cf.MODEL_PATH,
cf.OVERLAP,
cf.INCREASE_FACTOR,
cf.THRESHOLD
)
growth = cf.GROWTH_PIXELS
rows, cols = None, None
dataframe_regs = defaultdict(list)
columns = []
path=''
if cf.OUTPUT_METHOD not in ['imagej_text_file', 'statistics', 'visual_image_output', 'visual_overlay_output', 'all']:
raise NameError(
'Output method is not supported. Check the OUTPUT_METHOD variable in cvconfig.py.')
print("Checking previous segmentation progress...")
progress_table = cf.PROGRESS_TABLE
print("These tiles already segmented: ")
print(progress_table)
cf.FILENAMES = [item for item in cf.FILENAMES if item not in progress_table]
cf.FILENAMES.sort()
if cf.BOOST == 'auto':
path = os.path.join(cf.DIRECTORY_PATH, cf.AUTOBOOST_REFERENCE_IMAGE)
image = np.array(cf.READ_METHOD(path))
if cf.IS_CODEX_OUTPUT:
image = np.transpose(image, (2, 3, 0, 1))
image = image.reshape(cf.SHAPE)
nuclear_index = None
if cf.N_DIMS == 4:
nuclear_index = cvutils.get_channel_index(cf.NUCLEAR_CHANNEL_NAME, cf.CHANNEL_NAMES)
nuclear_image = cvutils.get_nuclear_image(cf.N_DIMS-1, image, nuclear_index=nuclear_index)
print('Using auto boosting - may be inaccurate for empty or noisy images.')
image_max = np.percentile(nuclear_image, cf.AUTOBOOST_PERCENTILE)
cf.BOOST = cvutils.EIGHT_BIT_MAX / image_max
print('Boosting with value of', cf.BOOST, ', check that this makes sense.')
count = 0
for filename in cf.FILENAMES:
count += 1
path = os.path.join(cf.DIRECTORY_PATH, filename)
image = np.array(cf.READ_METHOD(path))
if cf.IS_CODEX_OUTPUT:
image = np.transpose(image, (2, 3, 0, 1))
image = image.reshape(cf.SHAPE)
nuclear_index = None
if cf.N_DIMS == 4:
nuclear_index = cvutils.get_channel_index(cf.NUCLEAR_CHANNEL_NAME, cf.CHANNEL_NAMES)
nuclear_image = cvutils.get_nuclear_image(cf.N_DIMS-1, image, nuclear_index=nuclear_index)
nuclear_image = cvutils.boost_image(nuclear_image, cf.BOOST)
print('\nSegmenting with CellSeg:', filename)
masks, rows, cols = segmenter.segment_image(nuclear_image)
print('Stitching:', filename)
stitched_mask = CVMask(stitcher.stitch_masks(masks, rows, cols))
instances = stitched_mask.n_instances()
print(instances, 'cell masks found by segmenter')
if instances == 0:
print('No cells found in', filename, ', skipping to next')
continue
print('Growing cells by', growth, 'pixels:', filename)
if cf.USE_SEQUENTIAL_GROWTH:
print('Sequential growth selected')
stitched_mask.grow_by(0)
print('Removing overlaps by nearest neighbor:', filename)
stitched_mask.remove_overlaps_nearest_neighbors()
stitched_mask.new_grow_by(growth)
#print('Applying XY offset', filename)
else:
#stitched_mask.binarydilate(growth)
#stitched_mask.remove_conflicts_nn()
stitched_mask.grow_by(growth)
print('Removing overlaps by nearest neighbor:', filename)
stitched_mask.remove_overlaps_nearest_neighbors()
# print('Applying XY offset', filename)
#record masks as flattened array
stitched_mask.flatten_masks()
if not os.path.exists(cf.IMAGEJ_OUTPUT_PATH):
os.makedirs(cf.IMAGEJ_OUTPUT_PATH)
if not os.path.exists(cf.VISUAL_OUTPUT_PATH):
os.makedirs(cf.VISUAL_OUTPUT_PATH)
if not os.path.exists(cf.QUANTIFICATION_OUTPUT_PATH):
os.makedirs(cf.QUANTIFICATION_OUTPUT_PATH)
if cf.OUTPUT_METHOD == 'imagej_text_file':
print('Sort into strips and outputting:', filename)
new_path = os.path.join(
cf.IMAGEJ_OUTPUT_PATH, (filename[:-4] + '-coords.txt'))
stitched_mask.sort_into_strips()
stitched_mask.output_to_file(new_path)
if cf.OUTPUT_METHOD == 'visual_image_output' or cf.OUTPUT_METHOD == 'all':
print('Creating visual output saved to', cf.VISUAL_OUTPUT_PATH)
new_path = os.path.join(cf.VISUAL_OUTPUT_PATH, filename[:-4]) + 'visual_growth' + str(growth)
figsize = (cf.SHAPE[1] // 25, cf.SHAPE[0] // 25)
cvvisualize.generate_instances_and_save(
new_path + '.png', nuclear_image, stitched_mask.masks[1:,1:,:], figsize=figsize)
if cf.OUTPUT_METHOD == 'visual_overlay_output' or cf.OUTPUT_METHOD == 'all':
print('Creating visual overlay output saved to', cf.VISUAL_OUTPUT_PATH)
new_path = os.path.join(cf.VISUAL_OUTPUT_PATH, filename[:-4]) + 'growth' + str(growth) + 'mask.tif'
cvvisualize.generate_masks_and_save(new_path, nuclear_image, stitched_mask.masks[1:,1:,:])
if cf.OUTPUT_METHOD == 'statistics' or cf.OUTPUT_METHOD == 'all':
print('Calculating statistics:', filename)
reg, tile_row, tile_col, tile_z = 0, 1, 1, 0
if cf.IS_CODEX_OUTPUT:
reg, tile_row, tile_col, tile_z = cvutils.extract_tile_information(
filename)
channel_means, size = None, None
channel_means_comp, channel_means_uncomp, size = stitched_mask.compute_channel_means_sums_compensated(image)
centroids = stitched_mask.compute_centroids()
absolutes = stitched_mask.absolute_centroids(tile_row, tile_col)
semi_dataframe_comp = 1
if centroids.size != 0:
metadata_list = np.array([reg, tile_row, tile_col, tile_z])
metadata = np.broadcast_to(
metadata_list, (stitched_mask.n_instances(), len(metadata_list)))
semi_dataframe = np.concatenate(
[metadata, centroids, absolutes, size[:, None], channel_means_uncomp], axis=1)
semi_dataframe_comp = np.concatenate(
[metadata, centroids, absolutes, size[:, None], channel_means_comp], axis=1)
descriptive_labels = [
'Reg',
'Tile Row',
'Tile Col',
'Tile Z',
'In-Tile Y',
'In-Tile X',
'Absolute Y',
'Absolute X',
'Cell Size'
]
# Output to CSV
if not cf.IS_CODEX_OUTPUT:
cf.CHANNEL_NAMES = ['single-channel']
n_channels = cf.SHAPE[2]
if n_channels == 3:
cf.CHANNEL_NAMES = ['Red', 'Green', 'Blue']
columns = descriptive_labels + [s for s in cf.CHANNEL_NAMES]
dataframe = None
path = ''
regname = filename.split("_")[0]
if cf.SHOULD_COMPENSATE:
dataframe = pd.DataFrame(semi_dataframe_comp, columns=columns)
path = os.path.join(cf.QUANTIFICATION_OUTPUT_PATH, regname + '_statistics_growth' + str(growth)+'_comp')
else:
dataframe = pd.DataFrame(semi_dataframe, columns=columns)
path = os.path.join(cf.QUANTIFICATION_OUTPUT_PATH, regname + '_statistics_growth' + str(growth)+'_uncomp')
if os.path.exists(path+'.csv'):
dataframe.to_csv(path + '.csv',mode='a',header=False)
else:
dataframe.to_csv(path + '.csv')
#save intermediate progress in case of mid-run crash
with open(cf.PROGRESS_TABLE_PATH, "a") as myfile:
myfile.write(filename + "\n")
#duplicate existing csv files in fcs format at the end of run
if cf.OUTPUT_METHOD == 'statistics' or cf.OUTPUT_METHOD == 'all':
print("Duplicating existing csv files in fcs format")
descriptive_labels = [
'Reg',
'Tile Row',
'Tile Col',
'Tile Z',
'In-Tile Y',
'In-Tile X',
'Absolute Y',
'Absolute X',
'Cell Size'
]
columns = descriptive_labels + [s for s in cf.CHANNEL_NAMES]
filenames = os.listdir(cf.QUANTIFICATION_OUTPUT_PATH)
for filename in filenames:
path = os.path.join(cf.QUANTIFICATION_OUTPUT_PATH,filename)
dataframe = pd.read_csv(path,index_col=0)
path = path.replace('.csv','')
fcswrite.write_fcs(path + '.fcs', columns, dataframe)
print("Segmentation Completed")
if __name__ == "__main__":
main()