This repository has been archived by the owner on Apr 9, 2024. It is now read-only.
-
Notifications
You must be signed in to change notification settings - Fork 16
/
Copy pathgeneric_ark.rs
502 lines (444 loc) · 15.9 KB
/
generic_ark.rs
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
266
267
268
269
270
271
272
273
274
275
276
277
278
279
280
281
282
283
284
285
286
287
288
289
290
291
292
293
294
295
296
297
298
299
300
301
302
303
304
305
306
307
308
309
310
311
312
313
314
315
316
317
318
319
320
321
322
323
324
325
326
327
328
329
330
331
332
333
334
335
336
337
338
339
340
341
342
343
344
345
346
347
348
349
350
351
352
353
354
355
356
357
358
359
360
361
362
363
364
365
366
367
368
369
370
371
372
373
374
375
376
377
378
379
380
381
382
383
384
385
386
387
388
389
390
391
392
393
394
395
396
397
398
399
400
401
402
403
404
405
406
407
408
409
410
411
412
413
414
415
416
417
418
419
420
421
422
423
424
425
426
427
428
429
430
431
432
433
434
435
436
437
438
439
440
441
442
443
444
445
446
447
448
449
450
451
452
453
454
455
456
457
458
459
460
461
462
463
464
465
466
467
468
469
470
471
472
473
474
475
476
477
478
479
480
481
482
483
484
485
486
487
488
489
490
491
492
493
494
495
496
497
498
499
500
501
502
use ark_ff::PrimeField;
use ark_ff::Zero;
use num_bigint::BigUint;
use serde::{Deserialize, Serialize};
// XXX: Switch out for a trait and proper implementations
// This implementation is in-efficient, can definitely remove hex usage and Iterator instances for trivial functionality
#[derive(Clone, Copy, Eq, PartialOrd, Ord)]
pub struct FieldElement<F: PrimeField>(F);
impl<F: PrimeField> std::fmt::Display for FieldElement<F> {
fn fmt(&self, f: &mut std::fmt::Formatter) -> std::fmt::Result {
// First check if the number is zero
//
let number = BigUint::from_bytes_be(&self.to_be_bytes());
if number == BigUint::zero() {
return write!(f, "0");
}
// Check if the negative version is smaller to represent
//
let minus_number = BigUint::from_bytes_be(&(self.neg()).to_be_bytes());
let (smaller_repr, is_negative) =
if minus_number.to_string().len() < number.to_string().len() {
(minus_number, true)
} else {
(number, false)
};
if is_negative {
write!(f, "-")?;
}
// Number of bits needed to represent the smaller representation
let num_bits = smaller_repr.bits();
// Check if the number represents a power of 2
if smaller_repr.count_ones() == 1 {
let mut bit_index = 0;
for i in 0..num_bits {
if smaller_repr.bit(i) {
bit_index = i;
break;
}
}
return match bit_index {
0 => write!(f, "1"),
1 => write!(f, "2"),
2 => write!(f, "4"),
3 => write!(f, "8"),
_ => write!(f, "2{}", superscript(bit_index)),
};
}
// Check if number is a multiple of a power of 2.
// This is used because when computing the quotient
// we usually have numbers in the form 2^t * q + r
// We focus on 2^64, 2^32, 2^16, 2^8, 2^4 because
// they are common. We could extend this to a more
// general factorization strategy, but we pay in terms of CPU time
let mul_sign = "×";
for power in [64, 32, 16, 8, 4] {
let power_of_two = BigUint::from(2_u128).pow(power);
if &smaller_repr % &power_of_two == BigUint::zero() {
return write!(
f,
"2{}{}{}",
superscript(power as u64),
mul_sign,
smaller_repr / &power_of_two,
);
}
}
write!(f, "{smaller_repr}")
}
}
impl<F: PrimeField> std::fmt::Debug for FieldElement<F> {
fn fmt(&self, f: &mut std::fmt::Formatter<'_>) -> std::fmt::Result {
std::fmt::Display::fmt(self, f)
}
}
impl<F: PrimeField> std::hash::Hash for FieldElement<F> {
fn hash<H: std::hash::Hasher>(&self, state: &mut H) {
state.write(&self.to_be_bytes())
}
}
impl<F: PrimeField> PartialEq for FieldElement<F> {
fn eq(&self, other: &Self) -> bool {
self.to_be_bytes() == other.to_be_bytes()
}
}
impl<F: PrimeField> From<i128> for FieldElement<F> {
fn from(mut a: i128) -> FieldElement<F> {
let mut negative = false;
if a < 0 {
a = -a;
negative = true;
}
let mut result = match F::from_str(&a.to_string()) {
Ok(result) => result,
Err(_) => panic!("Cannot convert i128 as a string to a field element"),
};
if negative {
result = -result;
}
FieldElement(result)
}
}
impl<T: ark_ff::PrimeField> Serialize for FieldElement<T> {
fn serialize<S>(&self, serializer: S) -> Result<S::Ok, S::Error>
where
S: serde::Serializer,
{
self.to_hex().serialize(serializer)
}
}
impl<'de, T: ark_ff::PrimeField> Deserialize<'de> for FieldElement<T> {
fn deserialize<D>(deserializer: D) -> Result<Self, D::Error>
where
D: serde::Deserializer<'de>,
{
let s = <&str>::deserialize(deserializer)?;
match Self::from_hex(s) {
Some(value) => Ok(value),
None => Err(serde::de::Error::custom(format!("Invalid hex for FieldElement: {s}",))),
}
}
}
impl<F: PrimeField> From<u128> for FieldElement<F> {
fn from(a: u128) -> FieldElement<F> {
let result = match F::from_str(&a.to_string()) {
Ok(result) => result,
Err(_) => panic!("Cannot convert u128 as a string to a field element"),
};
FieldElement(result)
}
}
impl<F: PrimeField> From<bool> for FieldElement<F> {
fn from(boolean: bool) -> FieldElement<F> {
if boolean {
FieldElement::one()
} else {
FieldElement::zero()
}
}
}
impl<F: PrimeField> FieldElement<F> {
pub fn one() -> FieldElement<F> {
FieldElement(F::one())
}
pub fn zero() -> FieldElement<F> {
FieldElement(F::zero())
}
pub fn is_zero(&self) -> bool {
self == &Self::zero()
}
pub fn is_one(&self) -> bool {
self == &Self::one()
}
pub fn pow(&self, exponent: &Self) -> Self {
FieldElement(self.0.pow(exponent.0.into_bigint()))
}
/// Maximum number of bits needed to represent a field element
/// This is not the amount of bits being used to represent a field element
/// Example, you only need 254 bits to represent a field element in BN256
/// But the representation uses 256 bits, so the top two bits are always zero
/// This method would return 254
pub const fn max_num_bits() -> u32 {
F::MODULUS_BIT_SIZE
}
/// Maximum numbers of bytes needed to represent a field element
/// We are not guaranteed that the number of bits being used to represent a field element
/// will always be divisible by 8. If the case that it is not, we add one to the max number of bytes
/// For example, a max bit size of 254 would give a max byte size of 32.
pub const fn max_num_bytes() -> u32 {
let num_bytes = Self::max_num_bits() / 8;
if Self::max_num_bits() % 8 == 0 {
num_bytes
} else {
num_bytes + 1
}
}
pub fn modulus() -> BigUint {
F::MODULUS.into()
}
/// Returns None, if the string is not a canonical
/// representation of a field element; less than the order
/// or if the hex string is invalid.
/// This method can be used for both hex and decimal representations.
pub fn try_from_str(input: &str) -> Option<FieldElement<F>> {
if input.contains('x') {
return FieldElement::from_hex(input);
}
let fr = F::from_str(input).ok()?;
Some(FieldElement(fr))
}
/// This is the number of bits required to represent this specific field element
pub fn num_bits(&self) -> u32 {
let bits = self.bits();
// Iterate the number of bits and pop off all leading zeroes
let iter = bits.iter().skip_while(|x| !(**x));
// Note: count will panic if it goes over usize::MAX.
// This may not be suitable for devices whose usize < u16
iter.count() as u32
}
pub fn fits_in_u128(&self) -> bool {
self.num_bits() <= 128
}
pub fn to_u128(self) -> u128 {
let bytes = self.to_be_bytes();
u128::from_be_bytes(bytes[16..32].try_into().unwrap())
}
pub fn try_into_u128(self) -> Option<u128> {
self.fits_in_u128().then(|| self.to_u128())
}
pub fn try_to_u64(&self) -> Option<u64> {
(self.num_bits() <= 64).then(|| self.to_u128() as u64)
}
/// Computes the inverse or returns zero if the inverse does not exist
/// Before using this FieldElement, please ensure that this behavior is necessary
pub fn inverse(&self) -> FieldElement<F> {
let inv = self.0.inverse().unwrap_or_else(F::zero);
FieldElement(inv)
}
pub fn try_inverse(mut self) -> Option<Self> {
self.0.inverse_in_place().map(|f| FieldElement(*f))
}
// XXX: This method is used while this field element
// implementation is not generic.
pub fn into_repr(self) -> F {
self.0
}
pub fn to_hex(self) -> String {
let mut bytes = Vec::new();
self.0.serialize_uncompressed(&mut bytes).unwrap();
bytes.reverse();
hex::encode(bytes)
}
pub fn from_hex(hex_str: &str) -> Option<FieldElement<F>> {
let value = hex_str.strip_prefix("0x").unwrap_or(hex_str);
let hex_as_bytes = hex::decode(value).ok()?;
Some(FieldElement::from_be_bytes_reduce(&hex_as_bytes))
}
pub fn to_be_bytes(self) -> Vec<u8> {
// to_be_bytes! uses little endian which is why we reverse the output
// TODO: Add a little endian equivalent, so the caller can use whichever one
// TODO they desire
let mut bytes = Vec::new();
self.0.serialize_uncompressed(&mut bytes).unwrap();
bytes.reverse();
bytes
}
/// Converts bytes into a FieldElement and applies a
/// reduction if needed.
pub fn from_be_bytes_reduce(bytes: &[u8]) -> FieldElement<F> {
FieldElement(F::from_be_bytes_mod_order(bytes))
}
pub fn bits(&self) -> Vec<bool> {
let bytes = self.to_be_bytes();
let mut bits = Vec::with_capacity(bytes.len() * 8);
for byte in bytes {
let _bits = FieldElement::<F>::byte_to_bit(byte);
bits.extend(_bits);
}
bits
}
fn byte_to_bit(byte: u8) -> Vec<bool> {
let mut bits = Vec::with_capacity(8);
for index in (0..=7).rev() {
bits.push((byte & (1 << index)) >> index == 1)
}
bits
}
/// Returns the closest number of bytes to the bits specified
/// This method truncates
pub fn fetch_nearest_bytes(&self, num_bits: usize) -> Vec<u8> {
fn nearest_bytes(num_bits: usize) -> usize {
((num_bits + 7) / 8) * 8
}
let num_bytes = nearest_bytes(num_bits);
let num_elements = num_bytes / 8;
let mut bytes = self.to_be_bytes();
bytes.reverse(); // put it in big endian format. XXX(next refactor): we should be explicit about endianness.
bytes[0..num_elements].to_vec()
}
// mask_to methods will not remove any bytes from the field
// they are simply zeroed out
// Whereas truncate_to will remove those bits and make the byte array smaller
fn mask_to_be_bytes(&self, num_bits: u32) -> Vec<u8> {
let mut bytes = self.to_be_bytes();
mask_vector_le(&mut bytes, num_bits as usize);
bytes
}
fn and_xor(&self, rhs: &FieldElement<F>, num_bits: u32, is_xor: bool) -> FieldElement<F> {
// XXX: Gadgets like SHA256 need to have their input be a multiple of 8
// This is not a restriction caused by SHA256, as it works on bits
// but most backends assume bytes.
// We could implicitly pad, however this may not be intuitive for users.
// assert!(
// num_bits % 8 == 0,
// "num_bits is not a multiple of 8, it is {}",
// num_bits
// );
let lhs_bytes = self.mask_to_be_bytes(num_bits);
let rhs_bytes = rhs.mask_to_be_bytes(num_bits);
let and_byte_arr: Vec<_> = lhs_bytes
.into_iter()
.zip(rhs_bytes.into_iter())
.map(|(lhs, rhs)| if is_xor { lhs ^ rhs } else { lhs & rhs })
.collect();
FieldElement::from_be_bytes_reduce(&and_byte_arr)
}
pub fn and(&self, rhs: &FieldElement<F>, num_bits: u32) -> FieldElement<F> {
self.and_xor(rhs, num_bits, false)
}
pub fn xor(&self, rhs: &FieldElement<F>, num_bits: u32) -> FieldElement<F> {
self.and_xor(rhs, num_bits, true)
}
}
use std::ops::{Add, AddAssign, Div, Mul, Neg, Sub, SubAssign};
impl<F: PrimeField> Neg for FieldElement<F> {
type Output = FieldElement<F>;
fn neg(self) -> Self::Output {
FieldElement(-self.0)
}
}
impl<F: PrimeField> Mul for FieldElement<F> {
type Output = FieldElement<F>;
fn mul(mut self, rhs: FieldElement<F>) -> Self::Output {
self.0.mul_assign(&rhs.0);
FieldElement(self.0)
}
}
impl<F: PrimeField> Div for FieldElement<F> {
type Output = FieldElement<F>;
#[allow(clippy::suspicious_arithmetic_impl)]
fn div(self, rhs: FieldElement<F>) -> Self::Output {
self * rhs.inverse()
}
}
impl<F: PrimeField> Add for FieldElement<F> {
type Output = FieldElement<F>;
fn add(mut self, rhs: FieldElement<F>) -> Self::Output {
self.0.add_assign(&rhs.0);
FieldElement(self.0)
}
}
impl<F: PrimeField> AddAssign for FieldElement<F> {
fn add_assign(&mut self, rhs: FieldElement<F>) {
self.0.add_assign(&rhs.0);
}
}
impl<F: PrimeField> Sub for FieldElement<F> {
type Output = FieldElement<F>;
fn sub(mut self, rhs: FieldElement<F>) -> Self::Output {
self.0.sub_assign(&rhs.0);
FieldElement(self.0)
}
}
impl<F: PrimeField> SubAssign for FieldElement<F> {
fn sub_assign(&mut self, rhs: FieldElement<F>) {
self.0.sub_assign(&rhs.0);
}
}
#[cfg(test)]
mod tests {
#[test]
fn and() {
let max = 10_000u32;
let num_bits = (std::mem::size_of::<u32>() * 8) as u32 - max.leading_zeros();
for x in 0..max {
let x = crate::generic_ark::FieldElement::<ark_bn254::Fr>::from(x as i128);
let res = x.and(&x, num_bits);
assert_eq!(res.to_be_bytes(), x.to_be_bytes());
}
}
#[test]
fn serialize_fixed_test_vectors() {
// Serialized field elements from of 0, -1, -2, -3
let hex_strings = vec![
"0000000000000000000000000000000000000000000000000000000000000000",
"30644e72e131a029b85045b68181585d2833e84879b9709143e1f593f0000000",
"30644e72e131a029b85045b68181585d2833e84879b9709143e1f593efffffff",
"30644e72e131a029b85045b68181585d2833e84879b9709143e1f593effffffe",
];
for (i, string) in hex_strings.into_iter().enumerate() {
let minus_i_field_element =
-crate::generic_ark::FieldElement::<ark_bn254::Fr>::from(i as i128);
assert_eq!(minus_i_field_element.to_hex(), string)
}
}
#[test]
fn max_num_bits_smoke() {
let max_num_bits_bn254 = crate::generic_ark::FieldElement::<ark_bn254::Fr>::max_num_bits();
assert_eq!(max_num_bits_bn254, 254)
}
}
fn mask_vector_le(bytes: &mut [u8], num_bits: usize) {
// reverse to big endian format
bytes.reverse();
let mask_power = num_bits % 8;
let array_mask_index = num_bits / 8;
for (index, byte) in bytes.iter_mut().enumerate() {
match index.cmp(&array_mask_index) {
std::cmp::Ordering::Less => {
// do nothing if the current index is less than
// the array index.
}
std::cmp::Ordering::Equal => {
let mask = 2u8.pow(mask_power as u32) - 1;
// mask the byte
*byte &= mask;
}
std::cmp::Ordering::Greater => {
// Anything greater than the array index
// will be set to zero
*byte = 0;
}
}
}
// reverse back to little endian
bytes.reverse();
}
// For pretty printing powers
fn superscript(n: u64) -> String {
if n == 0 {
"⁰".to_owned()
} else if n == 1 {
"¹".to_owned()
} else if n == 2 {
"²".to_owned()
} else if n == 3 {
"³".to_owned()
} else if n == 4 {
"⁴".to_owned()
} else if n == 5 {
"⁵".to_owned()
} else if n == 6 {
"⁶".to_owned()
} else if n == 7 {
"⁷".to_owned()
} else if n == 8 {
"⁸".to_owned()
} else if n == 9 {
"⁹".to_owned()
} else if n >= 10 {
superscript(n / 10) + &superscript(n % 10)
} else {
panic!("{}", n.to_string() + " can't be converted to superscript.");
}
}