-
Notifications
You must be signed in to change notification settings - Fork 29.8k
/
node_platform.cc
302 lines (259 loc) Β· 9.13 KB
/
node_platform.cc
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
266
267
268
269
270
271
272
273
274
275
276
277
278
279
280
281
282
283
284
285
286
287
288
289
290
291
292
293
294
295
296
297
298
299
300
301
302
#include "node_platform.h"
#include "node_internals.h"
#include "env.h"
#include "env-inl.h"
#include "util.h"
#include <algorithm>
namespace node {
using v8::HandleScope;
using v8::Isolate;
using v8::Local;
using v8::Object;
using v8::Platform;
using v8::Task;
using v8::TracingController;
static void BackgroundRunner(void* data) {
TaskQueue<Task>* background_tasks = static_cast<TaskQueue<Task>*>(data);
while (std::unique_ptr<Task> task = background_tasks->BlockingPop()) {
task->Run();
background_tasks->NotifyOfCompletion();
}
}
PerIsolatePlatformData::PerIsolatePlatformData(
v8::Isolate* isolate, uv_loop_t* loop)
: isolate_(isolate), loop_(loop) {
flush_tasks_ = new uv_async_t();
CHECK_EQ(0, uv_async_init(loop, flush_tasks_, FlushTasks));
flush_tasks_->data = static_cast<void*>(this);
uv_unref(reinterpret_cast<uv_handle_t*>(flush_tasks_));
}
void PerIsolatePlatformData::FlushTasks(uv_async_t* handle) {
auto platform_data = static_cast<PerIsolatePlatformData*>(handle->data);
platform_data->FlushForegroundTasksInternal();
}
void PerIsolatePlatformData::CallOnForegroundThread(
std::unique_ptr<Task> task) {
foreground_tasks_.Push(std::move(task));
uv_async_send(flush_tasks_);
}
void PerIsolatePlatformData::CallDelayedOnForegroundThread(
std::unique_ptr<Task> task, double delay_in_seconds) {
std::unique_ptr<DelayedTask> delayed(new DelayedTask());
delayed->task = std::move(task);
delayed->platform_data = this;
delayed->timeout = delay_in_seconds;
foreground_delayed_tasks_.Push(std::move(delayed));
uv_async_send(flush_tasks_);
}
PerIsolatePlatformData::~PerIsolatePlatformData() {
FlushForegroundTasksInternal();
CancelPendingDelayedTasks();
uv_close(reinterpret_cast<uv_handle_t*>(flush_tasks_),
[](uv_handle_t* handle) {
delete reinterpret_cast<uv_async_t*>(handle);
});
}
void PerIsolatePlatformData::ref() {
ref_count_++;
}
int PerIsolatePlatformData::unref() {
return --ref_count_;
}
NodePlatform::NodePlatform(int thread_pool_size,
TracingController* tracing_controller) {
if (tracing_controller) {
tracing_controller_.reset(tracing_controller);
} else {
TracingController* controller = new TracingController();
tracing_controller_.reset(controller);
}
for (int i = 0; i < thread_pool_size; i++) {
uv_thread_t* t = new uv_thread_t();
if (uv_thread_create(t, BackgroundRunner, &background_tasks_) != 0) {
delete t;
break;
}
threads_.push_back(std::unique_ptr<uv_thread_t>(t));
}
}
void NodePlatform::RegisterIsolate(IsolateData* isolate_data, uv_loop_t* loop) {
Isolate* isolate = isolate_data->isolate();
Mutex::ScopedLock lock(per_isolate_mutex_);
PerIsolatePlatformData* existing = per_isolate_[isolate];
if (existing != nullptr)
existing->ref();
else
per_isolate_[isolate] = new PerIsolatePlatformData(isolate, loop);
}
void NodePlatform::UnregisterIsolate(IsolateData* isolate_data) {
Isolate* isolate = isolate_data->isolate();
Mutex::ScopedLock lock(per_isolate_mutex_);
PerIsolatePlatformData* existing = per_isolate_[isolate];
CHECK_NE(existing, nullptr);
if (existing->unref() == 0) {
delete existing;
per_isolate_.erase(isolate);
}
}
void NodePlatform::Shutdown() {
background_tasks_.Stop();
for (size_t i = 0; i < threads_.size(); i++) {
CHECK_EQ(0, uv_thread_join(threads_[i].get()));
}
Mutex::ScopedLock lock(per_isolate_mutex_);
for (const auto& pair : per_isolate_)
delete pair.second;
}
size_t NodePlatform::NumberOfAvailableBackgroundThreads() {
return threads_.size();
}
void PerIsolatePlatformData::RunForegroundTask(std::unique_ptr<Task> task) {
Isolate* isolate = Isolate::GetCurrent();
HandleScope scope(isolate);
Environment* env = Environment::GetCurrent(isolate);
InternalCallbackScope cb_scope(env, Local<Object>(), { 0, 0 },
InternalCallbackScope::kAllowEmptyResource);
task->Run();
}
void PerIsolatePlatformData::DeleteFromScheduledTasks(DelayedTask* task) {
auto it = std::find_if(scheduled_delayed_tasks_.begin(),
scheduled_delayed_tasks_.end(),
[task](const DelayedTaskPointer& delayed) -> bool {
return delayed.get() == task;
});
CHECK_NE(it, scheduled_delayed_tasks_.end());
scheduled_delayed_tasks_.erase(it);
}
void PerIsolatePlatformData::RunForegroundTask(uv_timer_t* handle) {
DelayedTask* delayed = static_cast<DelayedTask*>(handle->data);
RunForegroundTask(std::move(delayed->task));
delayed->platform_data->DeleteFromScheduledTasks(delayed);
}
void PerIsolatePlatformData::CancelPendingDelayedTasks() {
scheduled_delayed_tasks_.clear();
}
void NodePlatform::DrainBackgroundTasks(Isolate* isolate) {
PerIsolatePlatformData* per_isolate = ForIsolate(isolate);
do {
// Right now, there is no way to drain only background tasks associated
// with a specific isolate, so this sometimes does more work than
// necessary. In the long run, that functionality is probably going to
// be available anyway, though.
background_tasks_.BlockingDrain();
} while (per_isolate->FlushForegroundTasksInternal());
}
bool PerIsolatePlatformData::FlushForegroundTasksInternal() {
bool did_work = false;
while (std::unique_ptr<DelayedTask> delayed =
foreground_delayed_tasks_.Pop()) {
did_work = true;
uint64_t delay_millis =
static_cast<uint64_t>(delayed->timeout + 0.5) * 1000;
delayed->timer.data = static_cast<void*>(delayed.get());
uv_timer_init(loop_, &delayed->timer);
// Timers may not guarantee queue ordering of events with the same delay if
// the delay is non-zero. This should not be a problem in practice.
uv_timer_start(&delayed->timer, RunForegroundTask, delay_millis, 0);
uv_unref(reinterpret_cast<uv_handle_t*>(&delayed->timer));
scheduled_delayed_tasks_.emplace_back(delayed.release(),
[](DelayedTask* delayed) {
uv_close(reinterpret_cast<uv_handle_t*>(&delayed->timer),
[](uv_handle_t* handle) {
delete static_cast<DelayedTask*>(handle->data);
});
});
}
while (std::unique_ptr<Task> task = foreground_tasks_.Pop()) {
did_work = true;
RunForegroundTask(std::move(task));
}
return did_work;
}
void NodePlatform::CallOnBackgroundThread(Task* task,
ExpectedRuntime expected_runtime) {
background_tasks_.Push(std::unique_ptr<Task>(task));
}
PerIsolatePlatformData* NodePlatform::ForIsolate(Isolate* isolate) {
Mutex::ScopedLock lock(per_isolate_mutex_);
PerIsolatePlatformData* data = per_isolate_[isolate];
CHECK_NE(data, nullptr);
return data;
}
void NodePlatform::CallOnForegroundThread(Isolate* isolate, Task* task) {
ForIsolate(isolate)->CallOnForegroundThread(std::unique_ptr<Task>(task));
}
void NodePlatform::CallDelayedOnForegroundThread(Isolate* isolate,
Task* task,
double delay_in_seconds) {
ForIsolate(isolate)->CallDelayedOnForegroundThread(
std::unique_ptr<Task>(task), delay_in_seconds);
}
void NodePlatform::FlushForegroundTasks(v8::Isolate* isolate) {
ForIsolate(isolate)->FlushForegroundTasksInternal();
}
void NodePlatform::CancelPendingDelayedTasks(v8::Isolate* isolate) {
ForIsolate(isolate)->CancelPendingDelayedTasks();
}
bool NodePlatform::IdleTasksEnabled(Isolate* isolate) { return false; }
double NodePlatform::MonotonicallyIncreasingTime() {
// Convert nanos to seconds.
return uv_hrtime() / 1e9;
}
TracingController* NodePlatform::GetTracingController() {
return tracing_controller_.get();
}
template <class T>
TaskQueue<T>::TaskQueue()
: lock_(), tasks_available_(), tasks_drained_(),
outstanding_tasks_(0), stopped_(false), task_queue_() { }
template <class T>
void TaskQueue<T>::Push(std::unique_ptr<T> task) {
Mutex::ScopedLock scoped_lock(lock_);
outstanding_tasks_++;
task_queue_.push(std::move(task));
tasks_available_.Signal(scoped_lock);
}
template <class T>
std::unique_ptr<T> TaskQueue<T>::Pop() {
Mutex::ScopedLock scoped_lock(lock_);
if (task_queue_.empty()) {
return std::unique_ptr<T>(nullptr);
}
std::unique_ptr<T> result = std::move(task_queue_.front());
task_queue_.pop();
return result;
}
template <class T>
std::unique_ptr<T> TaskQueue<T>::BlockingPop() {
Mutex::ScopedLock scoped_lock(lock_);
while (task_queue_.empty() && !stopped_) {
tasks_available_.Wait(scoped_lock);
}
if (stopped_) {
return std::unique_ptr<T>(nullptr);
}
std::unique_ptr<T> result = std::move(task_queue_.front());
task_queue_.pop();
return result;
}
template <class T>
void TaskQueue<T>::NotifyOfCompletion() {
Mutex::ScopedLock scoped_lock(lock_);
if (--outstanding_tasks_ == 0) {
tasks_drained_.Broadcast(scoped_lock);
}
}
template <class T>
void TaskQueue<T>::BlockingDrain() {
Mutex::ScopedLock scoped_lock(lock_);
while (outstanding_tasks_ > 0) {
tasks_drained_.Wait(scoped_lock);
}
}
template <class T>
void TaskQueue<T>::Stop() {
Mutex::ScopedLock scoped_lock(lock_);
stopped_ = true;
tasks_available_.Broadcast(scoped_lock);
}
} // namespace node