-
Notifications
You must be signed in to change notification settings - Fork 0
/
Copy pathutil.h
122 lines (101 loc) · 2.76 KB
/
util.h
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
#include <chrono>
#include <cmath>
#include <condition_variable>
#include <functional>
#include <future>
#include <iomanip>
#include <iostream>
#include <memory>
#include <mutex>
#include <queue>
#include <stdexcept>
#include <thread>
#include <vector>
class timer {
public:
explicit timer(std::string label_);
void stop();
void kill();
~timer();
private:
std::chrono::steady_clock::time_point begin{};
std::string label{};
static std::mutex l;
bool done;
static std::string toReadable(long ns);
void destroy(bool print = true);
};
#ifndef THREAD_POOL_H
#define THREAD_POOL_H
class ThreadPool {
public:
ThreadPool(size_t);
template <class F, class... Args>
auto enqueue(F &&f, Args &&... args)
-> std::future<typename std::result_of<F(Args...)>::type>;
inline size_t getSize() const noexcept;
~ThreadPool();
private:
// need to keep track of threads so we can join them
std::vector<std::thread> workers;
// the task queue
std::queue<std::function<void()>> tasks;
// synchronization
std::mutex queue_mutex;
std::condition_variable condition;
size_t size;
bool stop;
};
// the constructor just launches some amount of workers
inline ThreadPool::ThreadPool(size_t threads) : size(threads), stop(false) {
workers.reserve(threads);
for (size_t i = 0; i < threads; ++i) {
workers.emplace_back([this] {
for (;;) {
std::function<void()> task;
{
std::unique_lock<std::mutex> lock(this->queue_mutex);
this->condition.wait(
lock, [this] { return this->stop || !this->tasks.empty(); });
if (this->stop && this->tasks.empty())
return;
task = std::move(this->tasks.front());
this->tasks.pop();
}
task();
}
});
}
}
// add new work item to the pool
template <class F, class... Args>
auto ThreadPool::enqueue(F &&f, Args &&... args)
-> std::future<typename std::result_of<F(Args...)>::type> {
using return_type = typename std::result_of<F(Args...)>::type;
auto task = std::make_shared<std::packaged_task<return_type()>>(
std::bind(std::forward<F>(f), std::forward<Args>(args)...));
std::future<return_type> res = task->get_future();
{
std::unique_lock<std::mutex> lock(queue_mutex);
// don't allow enqueueing after stopping the pool
if (stop)
throw std::runtime_error("enqueue on stopped ThreadPool");
tasks.emplace([task]() { (*task)(); });
}
condition.notify_one();
return res;
}
// the destructor joins all threads
inline ThreadPool::~ThreadPool() {
{
std::unique_lock<std::mutex> lock(queue_mutex);
stop = true;
}
condition.notify_all();
for (std::thread &worker : workers)
worker.join();
}
inline size_t ThreadPool::getSize() const noexcept {
return size;
}
#endif