Skip to content
New issue

Have a question about this project? Sign up for a free GitHub account to open an issue and contact its maintainers and the community.

By clicking “Sign up for GitHub”, you agree to our terms of service and privacy statement. We’ll occasionally send you account related emails.

Already on GitHub? Sign in to your account

Segmentation on the simplified human dataset (face label) #31

Open
dasbai opened this issue Oct 19, 2022 · 0 comments
Open

Segmentation on the simplified human dataset (face label) #31

dasbai opened this issue Oct 19, 2022 · 0 comments

Comments

@dasbai
Copy link

dasbai commented Oct 19, 2022

Thank you for your great work!
I'm a little confused about the segmentation accuracy of the Human dataset, which is provided by PD-Mesh (Simplified inputs with hard ground truth at faces). I try to use DiffusionNet (xyz) on it, but the accuracy is only 81%.
I try to use hks as input, and the accuracy is only 79%.
image
I also try to adjust C_width, but it seems to have no effect.
emmmmm..... I want to know what parameters I need to adjust....

The code for loading data and training:
human_seg_dataset.py

import os
import sys
import numpy as np
import torch
from torch.utils.data import Dataset
import potpourri3d as pp3d
sys.path.append(os.path.join(os.path.dirname(__file__), "../../"))  # add the path to the DiffusionNet src
import src.diffusion_net as diffusion_net


def is_mesh_file(filename):
    return any(filename.endswith(extension) for extension in ['.obj', 'off'])


class HumanDataset(Dataset):
    def __init__(self, root_dir, phase, k_eig=128, op_cache_dir=None):
        self.k_eig = k_eig 
        self.root_dir = root_dir
        self.cache_dir = os.path.join(root_dir, "cache")
        self.op_cache_dir = op_cache_dir
        self.dir = os.path.join(self.root_dir, phase)
        self.paths = self.make_dataset(self.dir)
        self.seg_paths = self.get_seg_files(self.paths, os.path.join(self.root_dir, 'seg'))

    def __len__(self):
        return len(self.paths)

    def __getitem__(self, index):
        path = self.paths[index]
        label = np.loadtxt(open(self.seg_paths[index], 'r'), dtype='float64')
        verts, faces = pp3d.read_mesh(path)
        verts = torch.tensor(verts).float()

        faces = torch.tensor(faces)
        label = torch.tensor(label).long()
        frames, mass, L, evals, evecs, gradX, gradY = diffusion_net.geometry.get_operators(verts, faces,
                                                                                           k_eig=self.k_eig,
                                                                                           op_cache_dir=self.op_cache_dir)
        return verts, faces, frames, mass, L, evals, evecs, gradX, gradY, label

    @staticmethod
    def get_seg_files(paths, seg_dir, seg_ext='.eseg'):
        segs = []
        for path in paths:
            segfile = os.path.join(seg_dir, os.path.splitext(os.path.basename(path))[0] + seg_ext)
            assert (os.path.isfile(segfile))
            segs.append(segfile)
        return segs

    @staticmethod
    def make_dataset(path):
        meshes = []
        assert os.path.isdir(path), '%s is not a valid directory' % path
        for root, _, fnames in sorted(os.walk(path)):
            for fname in fnames:
                if is_mesh_file(fname):
                    path = os.path.join(root, fname)
                    meshes.append(path)

        return meshes

seg_human.py

import os
import sys
import argparse
import torch
from torch.utils.data import DataLoader
from tqdm import tqdm

sys.path.append(os.path.join(os.path.dirname(__file__), "../../"))  # add the path to the DiffusionNet src
import src.diffusion_net as diffusion_net
from experiments.human_seg.human_seg_dataset import HumanDataset

# Parse a few args
parser = argparse.ArgumentParser()
parser.add_argument("--input_features", type=str, help="('xyz' or 'hks')", default='hks')
parser.add_argument("--features_width", type=int, choices={32, 64, 128, 256}, default=128)
parser.add_argument("--data_name", type=str, choices={'human'}, default='human')
parser.add_argument("--n_class", type=int, choices={8}, default=8)
args = parser.parse_args()

# system things
device = torch.device('cuda:0')
dtype = torch.float32
input_features = args.input_features  # one of ['xyz', 'hks']
C_width = args.features_width
k_eig = 128
n_epoch = 200
lr = 1e-3
decay_every = 50
decay_rate = 0.5
augment_random_rotate = (input_features == 'xyz')

# === Load datasets
data_name = args.data_name  # aliens vases chairs
base_path = os.path.dirname(__file__)
op_cache_dir = os.path.join(base_path, "data", "op_cache", data_name)
dataset_path = os.path.join(base_path, "data", data_name)
n_class = args.n_class
# Load the test dataset
test_dataset = HumanDataset(dataset_path, 'test', k_eig=k_eig, op_cache_dir=op_cache_dir)
test_loader = DataLoader(test_dataset, batch_size=None)
# Load the train dataset
train_dataset = HumanDataset(dataset_path, 'train', k_eig=k_eig, op_cache_dir=op_cache_dir)
train_loader = DataLoader(train_dataset, batch_size=None, shuffle=True)


# === Create the model
C_in={'xyz': 3, 'hks': 16}[input_features] # dimension of input features

model = diffusion_net.layers.DiffusionNet(C_in=C_in,
                                          C_out=n_class,
                                          C_width=C_width,
                                          N_block=4, 
                                          last_activation=lambda x : torch.nn.functional.log_softmax(x, dim=-1),
                                          outputs_at='faces', 
                                          dropout=True)


model = model.to(device)

# === Optimize
optimizer = torch.optim.Adam(model.parameters(), lr=lr)

def train_epoch(epoch):

    # Implement lr decay
    if epoch > 0 and epoch % decay_every == 0:
        global lr 
        lr *= decay_rate
        for param_group in optimizer.param_groups:
            param_group['lr'] = lr 


    # Set model to 'train' mode
    model.train()
    optimizer.zero_grad()
    
    correct = 0
    total_num = 0
    for data in tqdm(train_loader):

        # Get data
        verts, faces, frames, mass, L, evals, evecs, gradX, gradY, labels = data

        # Move to device
        verts = verts.to(device)
        faces = faces.to(device)
        frames = frames.to(device)
        mass = mass.to(device)
        L = L.to(device)
        evals = evals.to(device)
        evecs = evecs.to(device)
        gradX = gradX.to(device)
        gradY = gradY.to(device)
        labels = labels.to(device)
        
        # Randomly rotate positions
        if augment_random_rotate:
            verts = diffusion_net.utils.random_rotate_points(verts)

        # Construct features
        if input_features == 'xyz':
            features = verts
        elif input_features == 'hks':
            features = diffusion_net.geometry.compute_hks_autoscale(evals, evecs, 16)

        # Apply the model
        preds = model(features, mass, L=L, evals=evals, evecs=evecs, gradX=gradX, gradY=gradY, faces=faces)

        # Evaluate loss
        loss = torch.nn.functional.nll_loss(preds, labels)
        loss.backward()
        
        # track accuracy
        pred_labels = torch.max(preds, dim=1).indices
        this_correct = pred_labels.eq(labels).sum().item()
        this_num = labels.shape[0]
        correct += this_correct
        total_num += this_num

        # Step the optimizer
        optimizer.step()
        optimizer.zero_grad()

    train_acc = correct / total_num
    return train_acc


# Do an evaluation pass on the test dataset 
def test():
    
    model.eval()
    
    correct = 0
    total_num = 0
    with torch.no_grad():
    
        for data in tqdm(test_loader):

            # Get data
            verts, faces, frames, mass, L, evals, evecs, gradX, gradY, labels = data

            # Move to device
            verts = verts.to(device)
            faces = faces.to(device)
            frames = frames.to(device)
            mass = mass.to(device)
            L = L.to(device)
            evals = evals.to(device)
            evecs = evecs.to(device)
            gradX = gradX.to(device)
            gradY = gradY.to(device)
            labels = labels.to(device)
            
            # Construct features
            if input_features == 'xyz':
                features = verts
            elif input_features == 'hks':
                features = diffusion_net.geometry.compute_hks_autoscale(evals, evecs, 16)

            # Apply the model
            preds = model(features, mass, L=L, evals=evals, evecs=evecs, gradX=gradX, gradY=gradY, faces=faces)

            # track accuracy
            pred_labels = torch.max(preds, dim=1).indices
            this_correct = pred_labels.eq(labels).sum().item()
            this_num = labels.shape[0]
            correct += this_correct
            total_num += this_num

    test_acc = correct / total_num
    return test_acc 



print("Training...")

for epoch in range(n_epoch):
    train_acc = train_epoch(epoch)
    test_acc = test()
    print("Epoch {} - Train overall: {:06.3f}%  Test overall: {:06.3f}%".format(epoch, 100*train_acc, 100*test_acc))



# Test
test_acc = test()
print("Overall test accuracy: {:06.3f}%".format(100*test_acc))

I'm sorry that this content is too much. Any hint on this problem is appreciated!
Thanks! Have a nice day!

Sign up for free to join this conversation on GitHub. Already have an account? Sign in to comment
Labels
None yet
Projects
None yet
Development

No branches or pull requests

1 participant