- python 3
- see
requirements.txt
Download the traffic data files for Los Angeles (METR-LA) and Bay Area (PEMS-BAY) from Google Drive or Baidu Yun links provided by DCRNN. Put into the data/{METR-LA,PEMS-BAY}
folder.
Download Solar-Energy, Traffic, Electricity, Exchange-rate datasets from https://github.com/laiguokun/multivariate-time-series-data. Put into the data/{solar_AL,traffic,electricity,exchange_rate}
folder.
Run the following commands to generate train/validation/test dataset at data/{METR-LA,PEMS-BAY,solar_AL,traffic,electricity,exchange_rate}/{train,val,test}.npz
.
python generate_data.py
- METR-LA
# Use METR-LA dataset
python train.py --dataset_dir=data/METR-LA --input_dim=2
- PEMS-BAY
# Use PEMS-BAY dataset
python train.py --dataset_dir=data/PEMS-BAY --input_dim=2
- Solar-Energy
# Use Solar-Energy dataset
python train.py --dataset_dir=data/solar_AL --input_dim=1
- Traffic
# Use Traffic dataset
python train.py --dataset_dir=data/traffic --input_dim=1
- Electricity
# Use Electricity dataset
python train.py --dataset_dir=data/electricity --input_dim=1
- Exchange-rate
# Use Exchange-rate dataset
python train.py --dataset_dir=data/exchange_rate --input_dim=1
If you use our model LSCGF
in research, please cite this paper:
@inproceedings{chen2023balanced,
title={Balanced spatial-temporal graph structure learning for multivariate time series forecasting: a trade-off between efficiency and flexibility},
author={Chen, Weijun and Wang, Yanze and Du, Chengshuo and Jia, Zhenglong and Liu, Feng and Chen, Ran},
booktitle={Asian Conference on Machine Learning},
pages={185--200},
year={2023},
organization={PMLR}
}